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Abstract

In the area of music information retrieval (MIR), automatic music transcription is considered one of the

most challenging tasks, to solve which many different techniques have been proposed. This paper presents a

new method for polyphonic music transcription: a system that aims at estimating pitch, onset times, durations

and intensity of concurrent sounds in audio recordings, played by one or more instruments. Pitch estimation

is carried out by means of a front-end that jointly uses a constant-Q and a bispectral analysis of the input

audio signal; subsequently, the processed signal is correlated with a fixed 2-D harmonic pattern. Onsets

and durations detection procedures are based on the combination of the constant-Q bispectral analysis with

information from the signal spectrogram. The detection process is agnostic and it does not need to take into

account musicological and instrumental models or other a priori knowledge. The system has been validated

against the standard RWC (Real World Computing) - Classical Audio Database. The proposed method

has demonstrated good performances in the multiple F0 tracking task, especially for piano-only automatic

transcription at MIREX 2009.

Index Terms

Music information retrieval, polyphonic music transcription, audio signals processing, constant-Q analysis,

higher-order spectra, bispectrum.

I. INTRODUCTION

Automatic music transcription is the process of converting a musical audio recording into a symbolic notation (a

musical score or sheet) or any equivalent representation, usually concerning event information associated with pitch,

note onset times, durations (or equivalently, offset times) and intensity. This task can be accomplished by a well

ear-trained person, although it could be quite challenging for experienced musicians as well; besides, it is difficult to

be realized in a completely automated way. This is due to the fact that human knowledge of musicological models
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and harmonic rules are useful to solve the problem, although such skills are not easy to be coded and wrapped into

an algorithmic procedure.

An audio signal is composed of a single or a mixture of approximately periodic, locally stationary acoustic

waves. According to the Fourier representation, any finite energy signal is represented as the sum of an infinite

number of sinusoidal components weighted by appropriate amplitude coefficients. An acoustic wave is a particular

case in which, ideally, frequency values of single harmonic components are integer multiples of the first one,

called fundamental frequency (which is the perceived pitch). Harmonic components are called partials or simply

harmonics. Since the fundamental frequency of a sound, denoted as F0, is defined to be the greatest common divisor

of its own harmonic set (actually, in some cases, the spectral component corresponding to F0 can be missing), the

task of music transcription, i.e., the tracking of the partials of all concurrent sounds, is practically reduced to a time

periodicities search, which is equivalent to looking for energy maxima in the frequency domain. Thus, every single

note can be associated with a fixed and distinct comb-pattern of local maxima in the amplitude spectrum, which

appears like the one shown in Figure 1. The distances between energy maxima are expressed as integer multiples

of F0 (top) as well as in semitones (bottom): the latter are an approximation of the natural harmonic frequencies

in the well-tempered system.

 F0 2F0     3F0 4F0    5F0    6F0    7F0

 0           12    19 24     28     31     34

Figure 1. Fixed comb-pattern representing the harmonics set associated with every single note. Seven partials (fundamental frequency
included) with the same amplitude have been considered. The distances are also expressed (bottom) as semitones.

A. Previous Work

For the monophonic transcription task, some time-domain methods were proposed based on zero-crossing detec-

tion [1], or on temporal autocorrelation [2]. Frequency-domain based approaches are better suited for multi-pitch

detection of a mixture of sounds. In fact, the overlap of different period waves makes the task hard to be solved

exclusively in the time-domain.

First attempts of performing polyphonic music transcription started in the late 1970s, with the pioneering work

of Moorer [3] and Piszczalski and Galler [4]. During the years, the commonly-used frequency representation

of audio signals as a front-end for transcription systems has been developed in many different ways, and several

techniques have been proposed. Klapuri [5], [6] performed an iterative predominant F0 estimation and a subsequent
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cancelation of each harmonic pattern from the spectrum; Nawab [7] used an iterative pattern matching algorithm

upon a constant-Q spectral representation.

In the early 1990s, other approaches, based on applied psycho-acoustic models and also known as Computational

Auditory Scene Analysis (CASA), from the work by Bregman [8], started to be developed. This framework was

focused on the idea of formulating a computational model of the human inner ear system, which is known to work

as a frequency-selective bank of passband filters; techniques based on this model, formalized by Slaney and Lion

[9], were proposed by Ellis [10], Meddis and O’Mard [11], Tolonen and Karjalainen [12] and Klapuri [13]. Marolt

[14] used the output of adaptive oscillators as a training set for a bank of neural networks to track partials of piano

recordings. A systematic and collaborative organization of different approaches to the music transcription problem

is at the basis of the idea of the Blackboard Architecture proposed by Martin [15]. More recently, physical [16] and

musicological models, like average harmonic structure (AHS) extraction in [17], as well as other a priori knowledge

[18], and eventually temporal information [19] have been joined to the audio signal analysis in the frequency-domain

to improve transcription systems performances. Other frameworks rely on statistical inference, like hidden Markov

models [20], [21], [22], Bayesian networks [23], [24] or Bayesian models [25], [26]. Others, aiming at estimating the

bass line [27] or the melody and bass lines [28], [29], were proposed. Currently, the approach based on non-negative

matrix approximation [30] (in its different versions like non-negative matrix factorization of spectral features [31],

[32], [33]) has received much attention within the music transcription community.

Higher-order spectral analysis (which includes the bispectrum as a special case) has been applied to music audio

signals for source separation and instrumental modeling [34], to enhance the characterization of relevant acoustical

features [35], and for polyphonic pitch detection [36].

More detailed overviews of automatic music transcription methods and related topics are contained in [37], [38].

B. Proposed Method

This paper proposes a new method for automatic transcription of real polyphonic and multi-instrumental music.

Pitch estimation is here performed through a joint constant-Q and bispectral analysis of the input audio signal. The

bispectrum is a bidimensional frequency representation capable of detecting nonlinear harmonic interactions.

A musical signal produces a typical 1-D pattern of local maxima in the spectrum domain and, similarly, a 2-D

pattern in the bispectrum domain, as illustrated in Section III-C1. Objective of a multiple F0 estimation algorithm

is retrieving the information relative to each single note from the polyphonic mixture. A method to perform this

task, in the spectrum domain, consists in iteratively computing the cross-correlation between the audio signal and a

harmonic template, and subsequently canceling/subtracting the pattern relative to the detected note. The proposed

method applies this concept, opportunely adapted, in the bispectral domain.
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Experimental results show that using the bispectrum analysis yields superior performances than using the spectrum

domain: actually, as described in section III-C4, the local maxima distribution of the harmonic 2-D pattern generated

in the bispectrum domain is more useful in gathering multiple-F0 information in iterative pitch estimation and

harmonics extraction / cancelation methods.

A computationally efficient and relatively fast method to implement the bispectrum has been realized by using

the constant-Q transform, which produces a multi-band frequency representation with variable resolution. Note

duration estimation is based on a profile analysis of the audio signal spectrogram.

The goal of this research is showing the capabilities and potentialities of a constant-Q bispectrum (CQB) front-end

applied to the automatic music transcription task. The assessment of the proposed transcription system performances

has been conducted in the following way:the proposed method, based on the bispectrum front-end, and a similar

system, based on a simple spectrum front-end, were compared by using audio excerpts taken from the standard

RWC (Real World Computing) - Classical Audio Database [39], which is widely used in the recent literature for

information music retrieval tasks; the proposed algorithm has demonstrated good performances in the multiple F0

tracking task, especially for piano automatic transcription at MIREX 2009 evaluation framework. The results of

the comparison with the other participants are reported.

C. Paper Organization

In Section II, the bispectral analysis and the constant-Q transform are reviewed. Section III contains a detailed

description of the whole architecture and the rules for pitch, onset and note duration detection. Subsequently, in

section IV, experimental results, validation methods and parameters are presented. Finally, Section V is left to

conclusions.

II. THEORETICAL PRELIMINARIES

In this section, the theoretical concepts at the basis of the proposed method are recalled.

A. Musical concepts and notation

In music, the seven notes are expressed with alphabetical letters from A to G. The octave number is indicated

as a subscript. In this paper, the lowest piano octave is associated with number 0; thus, middle C, at 261 Hz, is

denoted with C4, and A4 (which is commonly used as a reference tone for instruments tuning) univocally identifies

the note at 440 Hz.

In the well-tempered system, if f1 and f2 are the frequencies of two notes separated by one semitone interval,

then f2 = f1 · 21/12. Under these conditions (which approximates the natural tuning, or just tuning), an interval

of one octave, (characterized by f2 = 2f1) it is composed of 12 semitones. Other examples of intervals between
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notes are the perfect fifth (f2 = 3/2 f1, corresponding to a distance of 7 semitones in the well-tempered scale),

the perfect fourth (f2 = 4/3 f1 or 5 semitones in the well-tempered scale), and the major third (f2 = 5/4 f1 or 4

semitones in the well-tempered scale).

B. The Bispectrum

The bispectrum belongs to the class of Higher-Order Spectra (HOS, or polyspectra), used to represent the

frequency content of a signal. An overview of the theory on HOS can be found in [40], [41] and [42]. The

bispectrum is defined as the third-order spectrum, being the amplitude spectrum and the power spectral density the

first and second-order ones, respectively.

Let x(k), k = 0, 1, . . . ,K−1, be a digital audio signal, modeled as a real, discrete and locally stationary process.

The nth order moment, mx
n, is defined [41] as:

mx
n(τ1, . . . , τn−1) = E{x(k)x(k + τ1) . . . x(k + τn−1)},

where E{·} is the statistical mean. The nth order cumulant, cx
n, is defined [41] as:

cx
n(τ1, . . . , τn−1) = mx

n(τ1, . . . , τn−1)−mG
n (τ1, . . . , τn−1),

where mG
n (τ1, . . . , τn−1) are the nth-order moments of an equivalent Gaussian sequence having the same mean and

autocorrelation sequence as x(k). Under the hypothesis of a zero mean sequence x(k), the relationships between

cumulants and statistical moments up to the third order are:

cx
1 = E{x(k)} = 0,

cx
2(τ1) = mx

2(τ1) = E
{
x(k)x(k + τ1)

}
,

cx
3(τ1, τ2) = mx

3(τ1, τ2) = E
{
x(k)x(k + τ1)x(k + τ2)

}
. (1)

The nth-order polyspectrum, denoted as Sx
n(f1, f2, . . . , fn−1), is defined as the (n − 1)-dimensional Fourier

transform of the corresponding order cumulant, that is:

Sx
n(f1, f2, . . . , fn−1) =

+∞∑
τ1=−∞

· · ·
+∞∑

τn−1=−∞
cx
n(τ1, τ2, . . . , τn−1) exp

(
− j2π(f1τ1 + f2τ2 + . . . + fn−1τn−1)

)
.

The polyspectrum for n = 3 is also called bispectrum. It is also denoted as:

Bx(f1, f2) = Sx
3 (f1, f2) =

+∞∑
τ1=−∞

+∞∑
τ2=−∞

cx
3(τ1, τ2)e−j2πf1τ1e−j2πf2τ2 . (2)

The bispectrum is a bivariate function representing some kind of signal-energy related information, as more deeply
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analyzed in the next section. In Figure 2, a contour-plot of the bispectrum of an audio signal is shown. As can be

noticed, the bispectrum presents twelve mirror symmetry regions:

Bx(f1, f2) = Bx(f2, f1) = B∗
x(−f2,−f1) = Bx(−f1 − f2, f2) =

= Bx(f1,−f1 − f2) = Bx(−f1 − f2, f1) = Bx(f2,−f1 − f2).

Hence, the analysis can take into consideration only a single non redundant bispectral region [43]. Hereafter,

Bx(f1, f2) will denote the bispectrum in the triangular region T with vertices (0,0), (fs/2,0) and (fs/3,fs/3),

i.e., T =
{

(f1, f2) : 0 ≤ f2 ≤ f1 ≤ fs

2 , f2 ≤ −2f1 + fs

}
, which is depicted in Figure 2, where fs is the sampling

frequency.

Bispectrum

frequency f 1  (Hz)

fr
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e
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y
 f
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Figure 2. Contour plot of the magnitude bispectrum, according to Equation (3), of the trichord F]3(185 Hz), D4(293 Hz), B4(493 Hz)
played on an acoustic upright piano and sampled at fs = 4 kHz. The twelve symmetry regions are in evidence (clockwise enumerated), and
the one chosen for analysis is highlighted.

It can be shown [41] that the bispectrum of a finite-energy signal can be expressed as:

Bx(f1, f2) = X(f1)X(f2)X∗(f1 + f2), (3)

where X(f) is the Fourier Transform of x(k), and X∗(f) is the complex conjugate of X(f).

As in the case of power spectrum estimation, the estimations of the bispectrum of a finite random process are

not consistent, i.e., their variance does not decrease with the observation length. Consistent estimations are obtained

by averaging either in the time or in the frequency domain. Two approaches are usually considered, as described

in [41].

The indirect method consists of: 1) the estimation of the third-order moments sequence, computed as temporal

average on disjoint or partially overlapping segments of the signal; 2) estimation of the cumulants, computed as
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the average of the third-order moments over the segments; 3) computation of the estimated bispectrum as the

bidimensional Fourier tansform of the windowed cumulants sequence.

The direct method consists of: 1) computation of the Fourier transform over disjoint or partially overlapping

segments of the signal; 2) estimation of the bispectrum in each segment according to (3) (eventually, frequency

averaging can be applied); 3) computation of the estimated bispectrum as the average of the bispectrum estimates

in each segment.

In this paper, in order to minimize the computational cost, the direct method has been used to estimate the

bispectrum of an audio signal.

C. Constant-Q Analysis

The estimation of the bispectrum according to (3), involves computing the spectrum X(f) on each segment

of the signal. In each octave, twelve semitones need to be discriminated: since the octave spacing doubles with

the octave number, the requested frequency resolution decreases when the frequency increases. For this reason, a

spectral analysis with a variable frequency resolution is suitable for audio applications.

The constant-Q analysis [44], [45] is a spectral representation that properly fits the exponential spacing of note

frequencies. In the constant-Q analysis, the spectral content of an audio signal is analyzed in several bands. Let N

be the number of bands and let

Qi =
fi

Bi
,

where fi is a representative frequency, e.g., the highest or the center frequency, of the ith band and Bi is its

bandwidth. In a constant-Q analysis, we have Qi = Q, i = 1, 2, . . . , N , where Q is a constant.

A scheme that implements a constant-Q analysis is illustrated in Figure 3. It consists of a tree structure, shown

in Figure 3-(a), whose building block, shown in Figure 3-(b), is composed of a spectrum analyzer block and by a

filtering/downsampling block (lowpass filter and downsampler by a factor two).

The spectrum analyzer consists in windowing the input signal (Hann window with length NH samples for each

band has been used) followed by a Fourier transform that computes the spectral content at specified frequencies

of interest. The lowpass filter is a zero-phase filter, implemented as a linear-phase filter followed by a temporal

shift. Using zero-phase filters allows us to extract segments from each band that are aligned in time. The nominal

filter cutoff frequency is at π/2. Due to the downsampling, the NH -samples long analysis window spans a duration

that doubles at each stage. Therefore, at low frequencies (i.e., at deeper stages of the decomposition tree), a higher

resolution in frequency is obtained at the price of a poorer resolution in time.
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Figure 3. Octave Filter Bank: (a) building block of the tree, composed by a spectrum analyzer and by a filtering/downsampling block; (b)
blocks combination to obtain a multi-octave analysis.

III. SYSTEM ARCHITECTURE

In this section, a detailed description of the proposed method for music transcription is presented. First a general

overview is given, then the main modules are discussed in detail.

A. General Architecture

A general view of the system architecture is presented in Figure 4. In the diagram, the main modules are depicted

(with dashed line) as well as the blocks composing each module.

The transcriptor accepts as input a PCM Wave audio file (mono or stereo) as well as user-defined parameters

related to the different procedures. The Pre-Processing module carries out the implementation of the constant-Q

analysis by means of the Octave Filter Bank block. Then, the processed signal enters both the Pitch Estimation and

Time Events Estimation modules. The Pitch Estimation module computes the bispectrum of its input, perform the

2-D correlation between the bispectrum and a harmonic-related pattern, and estimate candidate pitch values. The

Time Events Estimation module is devoted to the estimation of onsets and durations of notes. The Post-Processing

module discriminates notes from very short-duration events, seen as disturbances, and produces the output files: a

SMF0 MIDI file (which is the transcription of the audio source) and a list of pitches, onset times and durations of

all detected notes.

B. The Pre-Processing module

The Octave Filter Bank (OFB) block performs the constant-Q analysis over a set of octaves whose number Noct

is provided by the user. The block produces the spectrum samples - computed by using the Fourier transform -

relative to the nominal frequencies of the notes to be detected in each octave. In order to minimize detection errors

due to partial inharmonicity or instrument intonation inaccuracies, two additional frequencies aside each nominal

value have been considered as well. The distance between the additional and the fundamental frequencies is ±2%
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Figure 4. Music transcription system block architecture. The functional modules, inner blocks, input parameters and output variables and
functions are illustrated.

of each nominal pitch value, which is less than half a semitone spacing (assumed as approximately ±3%); the

maximum amplitude among the three spectral lines is associated with the nominal pitch frequency value. Hence,

the number of spectrum samples that is passed to the successive blocks for further processing is Np = 12 Noct,

where 12 is the number of pitches per octave.

As an example, consider that the OFB accepts an input signal sampled at fs=44100 Hz and consider that ideal

filters, with null transition bandwidth, are used. The outputs of the first three stages of the OFB tree cover the ranges

(0, 22050), (0, 11025), and (0, 5512.5). The spectrum analysis works only on the higher-half frequency interval of

each band, whereas the lower-half frequency interval is to be analyzed in the subsequent stages. Hence, with the

given sampling frequency, in the first three stages the octaves from F9 to E10, from F8 to E9, and from F7 to E8,

in that order, are analyzed. In general, in the ith stage, the interval from FNoct+1−i to ENoct+2−i, i = 1, 2, . . . , Noct,

is analyzed.

In the case of non-ideal filters, the presence of a non-null transition band must be taken into account. Consider the

branches of the building block of the OFB tree, shown in Figure 3-(b), the first leading to the spectral analysis sub-

block, the second to filtering and downsampling sub-block. Notes, whose nominal frequency falls into the transition

band of the filter, can not be resolved after downsampling and must be analyzed in the first (undecimated) branch.

Useful lowpass filters are designed by choosing, in normalized frequencies, the interval (0, γ π) as the passband,

the interval (γ π, π/2) as the transition band, and the interval (π/2, π) as the stopband; the parameter γ (γ < 0.5)

controls the transition bandwidth.
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Hence, the frequency interval that must be considered into the spectrum analysis step at the first stage is

(γfs/2, fs/2). In the second stage, the analyzed interval is (γfs/4, γfs/2), and, in general, if we define f
(i)
s =

fs/2(i−1) as the sampling frequency of the input of the ith stage, the frequency interval considered by the spectrum

analyzer block is (apart from the first stage) (γf
(i)
s /2, γf

(i)
s ). The filter mask H(ω) and the analyzed regions are

depicted in Figure 5.

ππ
2γπ

2 ω

Interval to be

analyzed in

the next

stages

X(ω)

H(ω)

Interval

affected by

aliasing after

decimation

Interval processed by

the spectrum analyzer

Figure 5. Filter mask and the analyzed regions.

Table I summarizes the system parameters we used to implement the OFB. With the chosen transition band, the

interval from E9 to E10 is analyzed in the first stage, and the interval from ENoct+1−i to D]Noct+2−i, i = 2, . . . , Noct,

is analyzed in the ith stage. At the end of the whole process, a spectral representation from E1 (at 41.203 Hz) to

E10 (at 21.096 kHz), sufficient to cover the extension of almost every musical instrument, is obtained.

Table I
OFB CHARACTERISTICS

Sampling frequency (fs) 44.1 kHz
Number of octaves (Noct) 9

Frequency range [40 Hz , 20 kHz]
Hann’s window length (NH ) 256 samples

FIR passband (0, 0.46 π)
FIR stopband (π/2, π)

FIR ripples (δ1 = δ2) 10−3

Filter length 187 samples

C. Pitch Estimation Module

The Pitch Estimation module receives as input the spectral information produced by the Octave Filter Bank

block. This module includes the Constant-Q Bispectral Analysis, the Iterative 2-D Pattern Matching, the Iterative
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Pitch Estimation and the Pitch & Intensity Data Collector blocks. The first block computes the bispectrum of the

input signal at the frequencies of interest. The Iterative 2-D Pattern Matching block is in charge of computing

the 2-D correlation between the bispectral array and a fixed, bi-dimensional harmonic pattern. The objective of

the Iterative Pitch Estimation block is detecting the presence of the pitches, and subsequently extracting the 2-D

harmonic pattern of detected notes from the bispectrum of the actual signal frame. Finally, the Pitch & Intensity

Data Collector block associates energy information to corresponding pitch values in order to collect the intensity

information.

In order to better explain the interaction of harmonics generated by a mixture of sounds, we first focus on the

application of the bispectral analysis to examples of monophonic signals, and then some examples of polyphonic

signals are considered.

1) Monophonic signal: Let x(n) be a signal composed by a set H of four harmonics, namely H = {f1, f2, f3, f4},

fk = k · f1, k = 2, 3, 4, i.e.,

x(n) =
4∑

k=1

2 cos(2πfkn/fs),

X(f) =
4∑

k=1

δ(f ± fk),

where constant amplitude partials have been assumed. According to (3), the bispectrum of x(n) is given by

Bx(η1, η2) = X(η1)X(η2)X∗(η1 + η2) =

=
( 4∑

k=1

δ(η1 ± fk)
)( 4∑

l=1

δ(η2 ± fl)
)( 4∑

m=1

δ(η1 + η2 ± fm)
)

.

When the products are developed, the only terms different from zero that appear are the pulses located at (fk, fl),

with fk, fl such that fk + fl ∈ H. Hence, we have

Bx(η1, η2) =δ(η1 ± f1)δ(η2 ± f1)δ(η1 + η2 ± f2) + δ(η1 ± f1)δ(η2 ± f2)δ(η1 + η2 ± f3)

+ δ(η1 ± f1)δ(η2 ± f3)δ(η1 + η2 ± f4) + δ(η1 ± f2)δ(η2 ± f1)δ(η1 + η2 ± f3)

+ δ(η1 ± f2)δ(η2 ± f2)δ(η1 + η2 ± f4) + δ(η1 ± f3)δ(η2 ± f1)δ(η1 + η2 ± f4).

Note that peaks arise along the first and third quadrant bisector thanks to the fact that f2 = 2f1 and f4 = 2f2. By

considering the non-redundant triangular region T defined in Section II-B, the above expression can be simplified

into

Bx(η1, η2) =δ(η1 − f1)δ(η2 − f1)δ(η1 + η2 − f2) + δ(η1 − f2)δ(η2 − f1)δ(η1 + η2 − f3)

+ δ(η1 − f3)δ(η2 − f1)δ(η1 + η2 − f4) + δ(η1 − f2)δ(η2 − f2)δ(η1 + η2 − f4).
(4)
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Equation (4) can be generalized to an arbitrary number T of harmonics as follows:

Bx(η1, η2) =
bT/2c∑

p=1

δ(η2 − fp)
T−p∑
q=p

δ(η1 − fq)δ(η1 + η2 − fp+q). (5)

This formula shows that every monophonic signal generates a bidimensional bispectral pattern characterized by

peaks positions {(fi, fi), (fi+1, fi), . . . , (fT−i, fi)}, i = 1, 2, . . . , bT
2 c. Such a pattern is depicted in Figure 6 for a

synthetic note at a fundamental frequency f1 = 131 Hz, with T = 7 and T = 8.

Bispectrum estimated via the direct method
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Figure 6. Bispectrum of monophonic signals (note C3) synthesized with (a) T = 7 and (b) T = 8 harmonics.

The energy distribution in the bispectrum domain is validated by the analysis of real world monophonic sounds.

Figure 7 shows the bispectrum of a C4 note played by an acoustic piano and a G3 note played by a violin, both

sampled at fs = 44100 Hz. Even if the number of significant harmonics is not exactly known, the positions of the

peaks in the bispectrum domain confirm the theoretical behaviour previously shown.

2) Polyphonic signal: Consider the simplest case of a polyphonic signal: a bichord. Accordingly with the linearity

of the Fourier Transform, the spectrum of a bichord is the sum of the spectra of the component sounds. From

Equation (3), it is clear that the bispectrum has a non-additivity nature. This means that, the bispectrum of a

bichord is not equal to the sum of the bispectra of component sounds, as described in Appendix A. In order to be

more specific, two examples, in which the two notes are spaced by either a major third or a perfect fifth interval,

are considered; such intervals are characterized by a significant number of overlapping harmonics. Figures 8-(a)

and 8-(b) show the bispectrum of synthetic signals representing the intervals C3 − E3 and C3 −G3, respectively.

For each note, ten constant-amplitude harmonics were synthesized. The top row plots in Figures 8-(a) and 8-(b)

demonstrate the spectrum of the synthesized audio segments, from which the harmonics of the two notes are

apparent. Overlapping harmonics, e.g., the frequencies 5i · F0C3
= 4i · F0E3

for the major third interval, with i

an integer, can not be resolved. In Figure 9, the bispectrum of a real bichord produced by two bowed violins,
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Figure 7. Bispectrum of (a) a C4 (261 Hz) played on a upright piano, and of (b) a G3 (196 Hz) played on a violin (bowed). Both sounds
have been sampled at 44100 Hz.

playing the notes A3 (220 Hz) and D4 (293 Hz), is shown. The interval is a perfect fourth (characterized by a

fundamental frequencies ratio equal to 4:3, corresponding to a distance of 5 semitones in the well-tempered scale),

so that each third harmonic of D4 overlaps with each fourth harmonic of A3. Both in the synthetic and in the real

sound examples, the patterns relative to each note are distinguishable, apart from a single peak on the quadrant

bisector.

In Appendix A, the bispectrum of polyphonic sound is theoretically treated, together with some examples. In

particular, the cases regarding polyphonic signals with two or more sounds have been considered. In the case

of bichords, one of the most interesting cases, being a perfect fifth interval, since it presents a strong partials

overlap ratio. In this case, the analysis of residual coming from the difference of the real bispectrum of the bichord

signal with respect to the linear composition of the single bispectra of concurrent sounds, has been performed. The

formal analysis has demonstrated that the contributions of this residual are null or negligible for proposed multi-F0

estimation procedure. This theoretical analysis has been also confirmed by the experimental results, as shown with

some examples. Moreover, the case of tri-chord with strong partial overlapping and a high number of harmonics

per sound has confirmed the same results.

3) Harmonic pattern correlation: Consider a 2-D harmonic pattern as dictated by the distribution of the bispectral

local maxima of a monophonic musical signal expressed in semitone intervals. The chosen pattern, shown in

Figure 10, has been validated and refined by studying the actual bispectrum computed on several real monophonic

audio signals. The pattern is a sparse matrix with all non-zero values (denoted as dark dots) set to one.

The Iterative 2-D Pattern Matching block computes the similarity between the actual bispectrum (produced by

the Constant-Q Bispectral Analysis by using the spectrum samples given by the Octave Filter Bank block) of the

analyzed signal and the chosen 2-D harmonic pattern. Since only 12Noct spectrum samples (at the fundamental
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Figure 8. Spectrum and bispectrum generated by (a) a major third C3 − E3 and (b) a perfect fifth interval C3 − G3. Ten harmonics
have been synthesized for each note. The regions into dotted lines in the bispectrum domain highlight that local maxima of both single
monophonic sounds are clearly separated, while they overlap in the spectral representation.

frequencies of each note) are of interest, the bispectrum results to be a 12Noct×12Noct array.The cross-correlation

between the bispectrum and the pattern is given by:

ρ(k1, k2) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(k1 + m1, k2 + m2)| , (6)

where 1 6 k1, k2 6 12Noct are the frequency indexes (spaced by semitone intervals), and P denotes the sparse

RP × CP 2-D harmonic pattern array. The ρ coefficient is assumed to take a maximum value when the template

array P exactly matches the distribution of the peaks of the played notes. If a monophonic sound has a fundamental

frequency corresponding to index q, then the maximum of ρ(k1, k2) is expected to be positioned at (q, q), upon the

first quadrant bisector. For this reason, ρ(k1, k2) is computed only for k1 = k2 = q and denoted in the following

as ρ(q). The 2-D cross-correlation computed in this way is far less noisy than the 1-D cross-correlation calculated

on the spectrum (as illustrated in the example in Appendix B). Finally, the ρ array is normalized to the maximum

value over each temporal frame.

The Iterative 2-D Pattern Matching block output is used by the Iterative Pitch Estimation block, whose task is

ascertaining the presence of multiple pitches in an audio signal.

4) Pitch Detection: (4a) - Recall on Spectrum Domain. Several methods based on pattern matching in the

spectrum domain were proposed for multiple-pitch estimation [5], [6], [7], [46]. In these methods, an iterative

approach is used. First, a single F0 is estimated by using different criteria (e.g., maximum amplitude, or lowest
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Figure 9. Detail (top figure) of the bispectrum of a bichord (A3 at 220 Hz and D4 at 293 Hz), played by two violins (bowed), sampled at
44100 Hz. The arrow highlights the frequency at 880 Hz, where the partials of the two notes overlap in the spectrum domain.

0 12 19 24 28 31

12

19

Distance in 

semitones

Distance in 

semitones

Figure 10. Fixed 2-D harmonic pattern used in the validation tests of the proposed music transcriptor. It represents the theoretical set of
bispectral local maxima for a monophonic 7-partials sound all weights are set equal to unity.

peak-frequency); then, the set of harmonics related to the estimated pitch is directly canceled from the spectrum and

the residual is further analyzed until its energy is less than a given threshold. In order not to excessively degrade

the original information, a partial cancelation (subtraction) can be performed based on perceptual criteria, spectral

smoothness, etc. The performance of direct/partial cancelation techniques, on the spectrum domain, significantly

degrades when the number of simultaneous voices increases.
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(4b) - Proposed Method. The method proposed in this paper uses an iterative procedure for multiple F0 estimation

based on successive 2-D pattern extraction in the bispectrum domain. Consider two concurrent sounds, with

fundamental frequencies Fl and Fh (Fl < Fh), such that Fh : Fl = m : n. Let Fov = nFh = mFl be the

frequency value of the first overlapping partial. Consider now the bispectrum generated by the mixture of the two

notes (as an example, see Figure 8). A set of peaks is located at the same abscissa Fov, that is at the co-ordinates

(Fov, klFl) and (Fov, khFh), where kl = 1, 2, . . . , m − 1, kh = 1, 2, . . . , n − 1. Hence, the peaks have the same

abscissa but are separated along the y-axis. If, for example, Fl is detected as the first F0 candidate, extracting

its 2-D pattern from the bispectrum does not completely eliminate the information carried by the harmonic Fov

related to Fh, that is the peaks at (Fov, khFh) are not removed. On the contrary, if Fh is detected as the first F0

candidate, in a similar way the peaks at (Fov, klFl) are not removed. This is strongly different than in methods

based on direct harmonic cancelation in the spectrum, where the cancelation of the 1-D harmonic pattern, after the

detection of a note, implies a complete loss of information about the overlapping harmonics of concurrent notes.

The proposed procedure can be summarized as follows:

1) Compute the 2-D correlation ρ(q) between the bispectrum and the chosen template, only upon the first

quadrant bisector:

ρ(q) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(q + m1, q + m2)| , (7)

derived directly from Equation (6)

2) Select the frequency value q0 yielding the highest peak of ρ(q) as the index of a candidate F0;

3) Cancel the entries of the bispectrum array that correspond to the harmonic pattern having q0as fundamental

frequency;

4) Repeat steps 1-3 until the energy of the residual bispectrum is higher than θEEB , where θE , 0 < θE < 1 is

a given threshold and EB is the initial bispectrum energy.

Once multiple F0 candidates have been detected, the corresponding energy values in the signal spectrum are

taken by the Pitch & Intensity Data Collector block, in order to collect also the intensity information. The output

of this block is the array π(t, q), computed over the whole musical signal, where q is the pitch index and t is the

discrete time variable over the frames: π(t, q) contains either zero values (denoting the absence of a note) or the

energy of the detected note. This array is used later in the Time Events Estimation module to estimate note durations,

as explained in the next section. In Appendix B, an example of multiple F0 estimation procedure, carried out by

using the proposed method is illustrated step by step. Results are compared with those obtained by a transcription

method performing a 1-D direct cancelation of the harmonic pattern in the spectrum domain. The test file is a real

audio signal, taken from RWC Music Database [39], analyzed in a single frame.

Page 16 of 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

17

In conclusion, the component of the spectrum at the frequency Fov is due to the combination of two harmonics

related to the notes Fl and Fh. According to eq. (3), the spectrum amplitude at Fov affects all the peaks in the

bispectrum located at (Fov, klFl) and (Fov, khFh). Interference of the two notes occurring at these peaks is not

resolved; nevertheless, we deem that the geometry of the bispectral local maxima is a relevant information that is

an added value of the bispectral analysis with respect to the spectral analysis, as experimental results confirm.

D. Time Events Estimation

The aim of this module is the estimation of the temporal parameters of a note, i.e., onset and duration times. The

module is composed of three blocks, namely the Time-Frequency Representation block, the Onset Times Detector

block, and the Notes Duration Detector block.

The Time-Frequency Representation block collects the spectral information X(f) of each frame, used also to

compute the bispectrum, in order to represent the signal in the time-frequency domain. The output of this block is

the array X(t, q), where t is the index over the frames, and q is the index over pitches, 1 6 q 6 12Noct.

The Onset Times Detector block uses the variable X(t, q) to detect the onset time of the estimated notes, which

is related to the attack stage of a sound. Mechanical instruments produce sounds with rapid volume variations over

time. Four different phases have been defined to describe the envelope of a sound, that is Attack, Decay, Sustain

and Release (ADSR envelope model). The ADSR envelope can be extracted in the time domain - without using

spectral information - for monophonic audio signals, whereas this approach results less efficient in a polyphonic

context. Several techniques [47], [48], [49] have been proposed for onset detection in the time-frequency domain.

The methods based on the phase-vocoder functions [48], [49] try to detect rapid spectral-energy variations over

time: this goal can be achieved either by simply calculating the amplitude difference between consecutive frames

of the signal spectrogram or by applying more sophisticated functions. The method proposed in this paper uses the

Modified Kullback-Liebler Divergence function, which achieved the best performance in [50]. This function aims

at evaluating the distance between two consecutive spectral vectors, highlighting large positive energy variations

and inhibiting small ones. The modified Kullbak-Liebler divergence DKL(t) is defined by:

DKL(t) =
12Noct∑

q=1

log
(

1 +
|X(t, q)|

|X(t− 1, q)|+ ε

)
,

where t ∈ [2, . . . , M ], with M the total number of frames of the signal; ε is a constant, typically ε ∈ [10−6, 10−3],

which is introduced to avoid large variations when very low energy levels are encountered, thus preventing DKL(t)

to diverge in proximity of the release stage of sounds. DKL(t) is an (M − 1)-element array, whose local maxima

are associated with the detected onset times. Some example plots of DKL(t) are shown in Figure 11.

The Notes Duration Detector block carries out the estimation of notes duration. The beginning of a note relies on
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Figure 11. Results of onset detection procedure obtained applying the Modified Kullback-Liebler Divergence over audio spectrogram for
two fragments from RWC - Classical Database: (a) 7 seconds extracted from Mozart’s String Quartet n. 19, K465; (b) the first 30 seconds
of Mozart’s first movement of Sonata for piano in A major K331.

the DKL(t) onset locations. The end of a note is assumed to coincide with the release phase of the ADSR model and

is based on the time-frequency representation. A combination of the information coming from both the functions

X(t, q) and π(t, q) (the latter computed in the Pitch Estimation module, see III-C4) is used, as described below. The

rationale for using this approach stems from the observation of the experimental results: π(t, q) supplies a robust

but time-discontinuous representation of the detected notes, whereas X(t, q) contains more robust information about

notes duration. The algorithm is the following:

For each q̄ such that ∃π(t, q̄) 6= 0 for some t, do:

1) Execute a smoothing (simple averaging) of array X(t, q̄) along the t-axis;

2) Identify the local maxima (peaks) and minima (valley) of the smoothed X(t, q̄);

3) Select from consecutive peak-valley points the couples whose amplitude difference exceed a given threshold

θpv;

4) Let (V1, P1) and (P2, V2) be two consecutive valley-peak and peak-valley couples that satisfy the previous

criterion: the extremals (V1, V2) identify a “possible note” event;

5) For each “possible note” event, do:

a) Estimate (V̄1, V̄2) ⊂ (V1, V2) such that (V̄1, V̄2) contains a given percentage of the energy in (V1, V2);

b) Set the onset time ONT of the note equal to the maximum of the DKL(t) array nearest to V̄1;

c) Set the offset time OFFT of the note equal to V̄2;

d) If π(t, q̄), with t ∈ (ONT ,OFFT ) contains non-zero entries, then a note at the pitch value q̄, beginning

at ONT and with duration OFFT - ONT is detected.
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E. System Output Data

The Post-Processing module tasks are the following. First, a cleaning operation in the time-domain is made in

order to delete events having a duration shorter than a user defined time tolerance parameter TTOL. Then, all the

information concerning the estimated note is tabulated into an output list file. These data are eventually sent to

a MIDI Encoder (taken from the Matlabr MIDI Toolbox in [51]), which generates the output MIDI SMF0 file,

provided that the user defines a tempo value TBPM , expressed in beats per minute.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, the experimental tests that have been set up to assess the performances of the proposed method

are described. First, the evaluation parameters are defined. Then, some results obtained by using excerpts from the

standard RWC-C database are shown, in order to highlight the advantages of the bispectrum approach with respect

to spectrum methods based on direct pattern cancellation. Finally, the results of the comparison of the proposed

method with others participating at the MIREX 2009 contest are presented.

A. Evaluation parameters

In order to assess the performances of the proposed method, the evaluation criteria that have been proposed in

MIREX 2009, specifically those related to the multiple F0 estimation (frame level and F0 tracking), were chosen.

The evaluation parameters are the following [52]:

• Precision: the ratio of correctly transcribed pitches to all transcribed pitches for each frame, i.e.,

Prec =
TP

TP + FP
,

where TP is the number of the true positives (correctly transcribed voiced frames) and FP is the number of

false positives (unvoiced note-frames transcribed as voiced).

• Recall: the ratio of correctly transcribed pitches to all ground truth reference pitches for each frame, i.e.,

Rec =
TP

TP + FN
,

where FN is the number of false negatives (voiced note-frames transcribed as unvoiced).

• Accuracy: an overall measure of the transcription system performance, given by

Acc =
TP

TP + FN + FP
.

• F-measure: a measure yielding information about the balance between FP and FN , that is

F-measure = 2× Prec× Rec
Prec + Rec

.
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B. Validation of the proposed method by using the RWC-C database

1) Experimental data set: The performances of the proposed transcription system have been evaluated by testing

it on some audio fragments taken from the standard RWC - Classical Music Database. The sample frequency is

44.1 kHz and a frame length of 256 samples (which is approximately 5.8 ms) have been chosen.

For each audio file, segments containing one or more complete musical phrases have been taken, so that the

excerpts have different time lengths. In Table II, the main features of the used test audio files are reported. The set

includes about 100000 one-frame-long voiced events.

Table II
TEST DATA SET FROM RWC - CLASSICAL DATABASE. VN(S): VIOLIN(S); VLA: VIOLA; VC: CELLO; CB: CONTRABASS; CL: CLARINET

# Author Title Catalog Number Instruments
Data RWC-MDB
(1) J.S. Bach Ricercare a 6, BWV 1079 C-2001 n. 12 2 Vns, Vc
(2) W. A. Mozart String Quartet n. 19, K 465 C-2001 n. 13 Vn, Vla, Vc, Cb
(3) J. Brahms Clarinet Quintet, op. 115 C-2001 n. 17 Cl, Vla, Vc
(4) M. Ravel Ma Mï£¡re l’Oye, Petit Poucet C-2001 n. 23B Piano
(5) W. A. Mozart Sonata K 331, 1st mov. C-2001 n. 26 Piano
(6) C. Saint - Saëns Le Cygne C-2001- n. 42 Piano and Violin
(7) G. Faurï£¡ Sicilienne, op. 78 C-2001 n. 43 Piano and Flute

The musical pieces were selected with the aim of creating an heterogeneous dataset: the list includes piano solo,

piano plus soloist, strings quartet and strings plus soloist recordings. Several metronomic tempo values were chosen.

The proposed transcription system has been realized and tested in Matlabr environment installed on a dual core

64-bit processor 2.6 GHz with 3 GB of RAM. With this equipment, the system performs the transcription in a

period which is approximately fifteen times the input audio file duration.

2) Comparison of bispectrum and spectrum based approaches: In this section, the performances of bispectrum

and spectrum based methods for multiple F0 estimation are compared. The comparison is made on a frame-by-frame

basis, that is every frame of the transcribed output is matched with every corresponding frame of the ground truth

reference of each audio sample, and the mismatches are counted.

The proposed bispectrum based algorithm, referred to as BISP in the following, has been described in Section

III-C. A spectrum-based method, referred to as SP1 in the following, is obtained in a way similar to the proposed

method by making the following changes: 1) the bispectrum front-end is substituted by a spectrum front-end; 2) the

2-D correlation in the bispectrum domain, using the 2-D pattern in Figure 10, is substituted by a 1-D correlation

in the spectrum domain, using the 1-D pattern in Figure 1. Both bispectrum and spectrum based algorithms are

iterative and perform subsequent 2-D harmonic pattern extraction and 1-D direct pattern cancelation, after an F0

has been detected. The same pre-processing (constant-Q analysis), onset and duration, and post-processing modules

have been used for both algorithms. A second spectrum-based method, referred to as SP2 in the following, in which
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F0 estimation is performed by simply thresholding the 1-D correlation output without direct cancelation, has been

also considered.

The frame-by-frame evaluation method requires a careful alignment between the ground truth reference and the

input audio. The ground truth reference data have been obtained from the MIDI files associated to each audio sample.

The RWC-C Database reference MIDI files, even though quite faithful, do not supply an exact time correspondence

with the real audio executions. Hence, time alignment between MIDI files and the signal spectrogram has been

carefully checked. An example of the results of the MIDI-spectrogram alignment process is illustrated in Figure 12.
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Figure 12. Graphical view of the alignment between reference MIDI file data (represented as rectangular objects) and the spectrogram of
the corresponding PCM Wave audio file (b). The detail shown here is taken from a fragment of Bach’s Ricercare a 6, The Musical Offering,
BWV 1079 (a), which belongs to the test data set.

The performances of algorithms BISP, SP1 and SP2 applied to the audio data set described in section IV-B1

are shown in Tables III, IV and V. The Tables show the overall accuracy and the F-measure evaluation metrics,

as well as the TP, FP and FN for each audio sample. A comparison of the results is presented in Figure 13, and a

graphical comparison between the output of BISP and SP1 is shown in Figure 15. In Figure 14, a graphical view

of the matching between the ground truth reference and the system piano-roll output representations is illustrated.

The results show that the proposed BISP algorithm outperforms spectrum based methods. BISP shows an overall

accuracy of 57.6%, and an F-measure of 72.1%. Since pitch detection is performed in the same way, such results

highlight the advantages of the bispectrum representation with respect to spectrum one. The results are encouraging

considering also the complex polyphony and the multi-instrumental environment of the test audio fragments.

The comparison with other automatic transcription methods is demanded to the next section, where the results

of the MIREX 2009 evaluation framework are reported.
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Table III
BISP: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 11025 2482 5038 59.4 74.6
(2) 6584 4401 2158 2223 50.1 66.8
(3) 12652 8865 2079 3787 60.2 75.1
(4) 12424 10663 2655 1761 70.8 82.8
(5) 6054 4120 1294 1934 56.1 71.8
(6) 20032 15122 6746 4910 56.5 72.2
(7) 21653 16563 9933 5090 52.4 68.8

TOTAL 95412 70759 27347 24743 57.6% 72.1%

Table IV
SP1: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10348 6327 5715 46.4 63.2
(2) 6584 3216 2021 3318 38.0 54.6
(3) 12652 6026 8187 6626 29.0 44.9
(4) 12424 10363 3920 2061 63.8 77.6
(5) 6054 4412 4542 1642 42.0 58.8
(6) 20032 9952 7558 10080 36.2 53.0
(7) 21653 11727 9813 9926 37.4 54.3

TOTAL 95412 56044 42368 39368 40.7% 57.8%

C. Results from MIREX 2009

The Music Information Retrieval Evaluation eXchange (MIREX) is the community-based framework for the

formal evaluation of Music Information Retrieval (MIR) systems and algorithms [53]. In 2009, MIREX has reached

its fifth running. The proposed BISP method has been submitted for an evaluation and a comparison with the other

participants in the field of Multiple Fundamental Frequency Estimation & Tracking, which is divided into the

following tasks: 1) Multiple Fundamental Frequency Estimation (MF0E); 2A) Mixed Set Note Tracking (NT); and

2B) Piano Only Note Tracking. Task 1 is a frame level evaluation (similar to that described in section IV-B2) of the

Table V
SP2: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10234 7857 5829 42.8 59.9
(2) 6584 2765 2243 3769 31.5 47.9
(3) 12652 6206 9590 6446 27.9 43.6
(4) 12424 9471 3469 2953 59.6 74.7
(5) 6054 3642 3844 2412 36.8 53.8
(6) 20032 7769 6692 12263 29.1 45.0
(7) 21653 10399 8023 11254 35.0 51.9

TOTAL 95412 50486 41718 44926 36.8% 53.8%
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Figure 13. Results of comparison between bispectrum based (BISP) and spectrum based (SP1 and SP2) multi-F0 estimation methods. SP1
performs iterative pitch estimation and harmonic pattern subtraction; SP2 performs simple thresholding of cross-correlation measure.

(a) (b)

Figure 14. Graphical (piano-roll) view of event matching between the ground truth reference and transcribed MIDI (b), related to Ravel’s
Ma Mï£¡re l’Oye - Petit Poucet (a), present in the test data set.

submitted methods. Task 2 considers as events to be detected notes characterized by pitches, onset and offset times.

For a specific definition of tasks and evaluation criteria, the reader should refer to [54]. Two different versions of

the proposed system have been submitted to MIREX: they are referred to as NPA1 and NPA2 as team-ID. The

differences between the two versions regard mainly the use of the Time Events Estimation module: NPA1 simply

performs a multiple-F0 estimation without onset and duration times detection, whereas NPA2 uses the procedures

described in Section III-D. As a result, NPA2 has reported better results than NPA1 in all the three tasks considered.

A detailed overview of the overall performance results is available at [55], see section Multiple Fundamental
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Figure 15. Graphical comparison between piano-roll output of BISP and SP1, and the reference ground truth data. The test audio example
is a fragment of the 3rd variation of Mozart’s Piano Sonata K 331.

Frequency Estimation and Tracking Results.

For Task 1 (MF0E), accuracy has been chosen as a key performance indicator. The proposed system NPA2 is mid-

level ranked, with an accuracy of 48%; anyway, it presents the second highest recall rate (76%); this demonstrates

that the proposed system has a good capability in detecting ground truth reference notes, showing a tendency

in detecting more false positives than false negatives. For Task 2A (Mixed Set NT) and Task 2B (Piano Only

NT), F-measure has been chosen as the overall performance indicator. In Task 2A, the proposed system NPA2 has

achieved the third highest F-measure rate and the second highest recall rate; again the precision rate show a quite

high false positive detection rate. In Task 2B, the proposed system NPA2 is top-ranked, outperforming all the other

competitors’ systems.

Results of MIREX 2009 are summarized in Figures 16-18

V. CONCLUSIONS

In this paper a new technique for automatic transcription of real, polyphonic and multi-instrumental music has

been presented. The system implements a novel front-end, obtained by a constant-Q bispectral analysis of the

input audio signal, which offers advantages with respect to lower dimensional spectral analysis in polyphonic pitch

estimation. In every frame, pitch estimation is performed by means of a 2-D correlation between signal bispectrum

and a fixed bi-dimensional harmonic pattern, while information about intensity of detected pitches is taken directly
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Figure 16. Results of MIREX 2009 evaluation task 1: Multiple F0 estimation on a frame by frame level (MF0E). The system proposed in
this paper has been submitted in two different versions, referred to as NPA1 and NPA2, from the name of the authors.
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Figure 17. Results of MIREX 2009 evaluation task 2A: Mixed-set note tracking (NT).

from the magnitude spectrum. Onset times are detected by a procedure that highlights large energy variations

between consecutive frames of the time-frequency signal representation. Such a representation is also the basis

for note durations estimation: a pitch against time representation of detected notes is compared with the audio

spectrogram; the duration of each detected note event in the former is adjusted to the duration of corresponding

event in the latter. All these data concerning pitches, onset times, durations and volumes are tabulated and output

as a numerical list and a standard MIDI file is produced.

The capabilities and the performance of the proposed transcription system have been compared with a spectrum

based transcription system. The evaluation data set has been extracted from the standard RWC - Classical Database;

for this purpose the whole architecture has been left the most general as possible, without introducing any a priori

knowledge. Standard parameters have been used for validation. Our system successfully identified over 57% of

voiced events, with an overall F-measure of 72.1%. Finally, a comparison with other methods have been made

within the MIREX 2009 evaluation framework, in which the proposed system has achieved good rankings: in
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Figure 18. Results of MIREX 2009 evaluation task 2B: Piano-only note tracking (NT).

particular, it has been top ranked in the piano-only tracking task. The MIREX results show a very good overall

recall rate in all the three tasks the proposed system was submitted to. The weakest aspect seems to be a still quite

high false positive rate, which affects the precision rate. This could be further improved with the introduction of

physical / musicological / statistical models, or any other knowledge that may be useful to solve the challenging task

of music transcription. The added values of the proposed solution, with respect to the methods based on multi-F0

estimation via direct cancellation on the spectrum domain, are the less leakage of information in presence of partial

overlapping, and the computation of a clearer 2-D cross-correlation which leads to stronger decision capabilities.
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Appendix A – Analysis of bispectrum for polyphonic sounds 
In this Appendix, the bispectrum of polyphonic sound is theoretically treated, together with 

some examples. In particular, the cases regarding polyphonic signals with two or more sounds have 
been considered. In the case of bichords, one of the most interesting cases, being a perfect fifth 
interval, since it presents a strong partials overlap ratio. In this case, the analysis of residual coming 
from the difference of the real bispectrum of the bichord signal with respect to the linear 
composition of the single bispectra of concurrent sounds, has been performed. The formal analysis 
has demonstrated that the contributions of this residual are null or negligible for proposed multi-F0 
estimation procedure. This theoretical analysis has been also confirmed by the experimental results, 
as shown with some examples. Moreover, the case of tri-chord with strong partial overlapping and a 
high number of harmonics per sound has confirmed the same results. 

A.1 Bispectrum of a polyphonic signal: a bichord 

In this section, the behaviour of the bispectrum for a polyphonic signal is analyzed. Let us to 
recall the spectrum (positive frequencies only) of a generic monophonic sound with fundamental 
frequency 0f : 

0

0
1,...,

( ) ( )
k P
kf H

X f δ f kf



  , 

where H is the set of harmonics of the sound, consisting of P partials (fundamental frequency 
included):  0 0 0 0 0, 2 ,3 ,..., ( 1) ,H f f f P f Pf  . 

Consider now, as an example and without loss of generality, two synthesized sounds, 1S  and 2S , 

each one composed by five partials, so that { }1 01 01 01 01 01,2 ,3 ,4 ,5H f f f f f=  and 

{ }2 02 02 02 02 02,2 ,3 ,4 ,5H f f f f f= . The generated spectra are denoted as 1( )X f  and 2( )X f , 

respectively. Accordingly with the linearity of the Fourier Transform, let 1 2( ) ( ) ( )X f X f X f   

be the spectrum of the polyphonic signal S, composed by the mixture of 1S  and 2S . Under these 

assumptions, the bispectrum of the polyphonic signal, computed with the direct method (defined by 
eq. (3), Section II.B in the paper) can be expressed as the follows: 

   

*
1 2 1 2 1 2

*
1 1 2 1 1 2 2 2 1 1 2 2 1 2

*
1 1 1 2 1 1 2

*
1 1 2 2 1 1 2

*
2 1 1 2 1 1 2

*
2 1 2 2 1 1 2

*
1 1 1 2 2 1 2

1 1

( , ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

SB f f X f X f X f f

X f X f X f X f X f f X f f

X f X f X f f

X f X f X f f

X f X f X f f

X f X f X f f

X f X f X f f

X f

  

      

 

 

 

 

 

 *
2 2 2 1 2

*
2 1 1 2 2 1 2

*
2 1 2 2 2 1 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

X f X f f

X f X f X f f

X f X f X f f



 

 

(A.1) 
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A.2 Analysis of bispectrum nonlinearity 

 The first and the last terms of the sum in equation (A.1) are equal to 
1 1 2( , )SB f f  and 

2 1 2( , )SB f f , respectively. The bispectrum is not linear, actually 

1 21 2 1 2 1 2( , ) ( , ) ( , )S S SB f f B f f B f f  . Let 1 2( , )diffB f f  be the difference 

1 21 2 1 2 1 2( , ) ( , ) ( , )S S SB f f B f f B f f  : 

*
1 2 1 1 2 2 1 1 2

*
2 1 1 2 1 1 2

*
2 1 2 2 1 1 2

*
1 1 1 2 2 1 2

*
1 1 2 2 2 1 2

*
2 1 1 2 2 1 2

( , ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

diffB f f X f X f X f f

X f X f X f f

X f X f X f f

X f X f X f f

X f X f X f f

X f X f X f f

 

 

 

 

 

 

                                            (A.2) 

 Let us analyze each term of the sum in equation (A.2), in order to better understand the 
behaviour of 1 2( , )diffB f f . 

 The first term yields: 

01 1 02 2 01 1

*
1 1 2 2 1 1 2 1 01 2 02 1 2 01 {1,2,1}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) ;Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

the product {1,2,1}Π  is not null only if each term of the product itself is not null. Concerning the 

first two terms, this happens when 1 01f kf  (that is, when 1f  takes the value of any of the partials 

belonging to 1H ) and, similarly, when 2 02f lf . This involves that, considering the third term, the 

entire product is non-zero only when it exists at least an integer value m such that: 

01 01 02mf kf lf  , 1,...,5k  , 1,...,5l   and 01 1mf H . To satisfy this condition, it is necessary 

(but not sufficient, depending on the length of 1H  and 2H ) that the sounds present overlapping 

partials; a sufficient condition is that the two harmonic series, 1H  and 2H , share at least one 

frequency value. 
As an example: consider two sounds, with harmonic sets 1H  and 2H , generate a perfect 

fifth interval (which presents a very strong partials overlap ratio); this implies 02 012 3f f . Under 

these conditions, the contribute of {1,2,1}Π  would be non-zero only for the following couples 

1 2( , )f f : 

01 02( , 2 )f f  and 01 02(2 ,2 )f f , 

with 01 02 01 01 01 12 3 4f f f f f H     , and also 01 02 01 01 01 12 2 2 3 5f f f f f H     . It is 

worthy to notice that these two couples are located in the upper triangular region of the plane 

1 2( , )f f , above the first quadrant bisector, and so they are outside the non-redundant region 
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considered in the computation of the bispectrum (see Section II.B and Figure 2 of the paper). For 

this reason, the contribute of {1,2,1}Π  to 1 2( , )diffB f f , in this context, is zero. This analysis can be 

generalized for all the terms of the sum in 1 2( , )diffB f f , as reported in the following.  

 Considering the second term of the sum in equation (A.2): 

02 2 01 1 01 1

*
2 1 1 2 1 1 2 1 02 2 01 1 2 01 {2,1,1}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) ;Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

the term {2,1,1}Π  is non-zero only if exist at least an integer values m such that 01 02 01mf kf lf  , 

1,...,5k  , 1,...,5l   and 01 1mf H . Following the example of the two sounds generating a perfect 

fifth interval, this happens only for the couples of frequencies 

02 01(2 , )f f  and 02 01(2 ,2 )f f . 

As it can be noticed, this is the symmetric case of {1,2,1}Π , with respect to the first quadrant 

bisector, and in this circumstance these points are inside the non-redundant region considered for 

bispectrum computation. Therefore, {2,2,1}Π  is not null in these points; however, 1 1 2( , )B f f  also 

generates nonnull values in correspondence of these two couples, in the equivalent form of 

01 01(3 , )f f  and 01 01(3 ,2 )f f  (see equation (5), Section III.C of the paper). For this reason, {2,1,1}Π  

does not generate any additional peaks in the 1 2( , )f f  plane; the only effect is to add an amplitude 

contribute to bispectral peaks generated by 1 1 2( , )B f f , at the same positions in the 1 2( , )f f  plane. 

At the end of these considerations we will show that these contributes can be considered not 
relevant in the computation of normalized 2-D cross-correlation, within the Multi-F0 estimation 
procedure. 
 

Consider now the third term in equation (A.2): 

02 2 02 2 01 1

*
2 1 2 2 1 1 2 1 02 2 02 1 2 01 {2,2,1}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) ;Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

{2,2,1}Π  is non-zero only if exist at least an integer value m such that 01 02 02mf kf lf  , 1,...,5k  , 

1,...,5l   and 01 1mf H . In our example, such a case occurs for the couple 

02 02( , )f f , 

actually 02 02 01 01 01 1
3 3

3
2 2

f f f f f H     . This shows that {2,2,1}Π  only adds an amplitude 

contribute to a bispectral peak originated by 2 1 2( , )B f f  at the same position in the 1 2( , )f f  plane, 

without generating any additional peaks. 
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Consider the fourth term in equation (A.2): 

01 1 01 1 02 2

*
1 1 1 2 2 1 2 1 01 2 01 1 2 02 {1,1,2}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) ;Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

{1,1,2}Π  is non-zero only if exist at least an integer value m such that 02 01 01mf kf lf  , 1,...,5k  , 

1,...,5l   and 02 2mf H . In our example, this happens for the following couples of frequencies: 

 01 01( , 2 )f f , actually 01 01 01 02 22 3 2f f f f H    ; 

 01 01( ,5 )f f , actually 01 01 01 02 25 6 4f f f f H    ; 

 01 01(2 ,4 )f f , actually 01 01 01 02 22 4 6 4f f f f H    . 

These three couples are outside the non-redundant region considered for bispectrum 

computation; {1,1,2}Π  is not null only in correspondence of the following couples, which are the 

symmetric ones of the three ones listed above (with respect to the first quadrant bisector): 

 01 01(2 , )f f : this adds an amplitude contribute to the bispectral peak generated by 

1 1 2( , )B f f  at the same position in the 1 2( , )f f  plane; 

 01 01(5 , )f f  and 01 01(4 ,2 )f f ; in correspondence of these two couples {1,1,2}Π  gives 

origin (in this particular case) to two additional peaks in the bispectrum: they represent 
an extension to the five harmonics 2-D monophonic pattern of the sound at pitch 01f , 

(according to equation (5), Section III.C of the paper). The reason why 1 1 2( , )B f f  does 

not generate peaks in correspondence of these two couples is that the considered 
harmonic set 1H  is composed by five partials. 

 

Consider the fifth term in equation (A.2): 

01 1 02 2 02 2

*
1 1 2 2 2 1 2 1 01 2 02 1 2 02 {1,2,2}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) ;Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

{1,2,2}Π  is non-zero only if exist at least an integer value m such that 02 01 02mf kf lf  , 1,...,5k  , 

1,...,5l   and 02 2mf H . In our example, this happens for the following couples of frequencies: 

 01 02(3 , )f f  and 01 02(3 ,2 )f f , in correspondence of which add {1,2,2}Π  adds an 

amplitude contribute to the bispectral peaks generated by 2 1 2( , )B f f  in 02 02(2 , )f f  and 

02 02(2 ,2 )f f ; 

 01 02(3 ,3 )f f , which is outside the non-redundant region considered in the computation 

of the bispectrum. 
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Consider, finally, the sixth term in equation (A.2): 

02 2 01 1 02 2

*
2 1 1 2 2 1 2 1 02 2 01 1 2 02 {2,1,2}

1,...,5 1,...,5 1,...,5

( ) ( ) ( ) ( ) ( ) ( ) .Π
k l m
kf H lf H mf H

X f X f X f f δ f kf δ f lf δ f f mf
  
  

        

 

As it can be noticed, this is the symmetric case of the previous {1,2,2}Π , with respect to the first 

quadrant bisector. Therefore, {2,1,2}Π  is non-zero only when exist at least an integer value m such 

that 02 02 01mf kf lf  , 1,...,5k  , 1,...,5l   and 02 2mf H . In our example, this happens for the 

following couples of frequencies: 

 02 01( ,3 )f f , which is outside the non-redundant region considered in the computation of 

the bispectrum; 

 02 01(2 ,3 )f f  and 02 01(3 ,3 )f f , in correspondence of which {2,1,2}Π  adds an amplitude 

contribute to the bispectral peaks generated by 2 1 2( , )B f f  in 02 02(2 ,2 )f f  and 

02 02(3 ,2 )f f . 

Eventually, let us to remember that we have illustrated an example in which the two 
interfering sounds present a strong partials overlap ratio. For a generic synthesized bichord, the 
contribute of 1 2( , )diffB f f   gains more relevance with the increasing number of partials in the 

harmonic sets of the sounds, and with the increasing partials overlap ratio. In the other cases, when 
the two sounds don't share the value of any of their partials within their harmonic sets, the value of 

1 2( , )diffB f f  is zero. 

 

A.3 Empirical example: a synthesized bichord 

A graphical example could be useful to illustrate in a clearer way this argumentation.  
 
In Figure A.1, the contour plot of the bispectrum of a synthesized 5 harmonics bichord: 

4 4C G  C G4 4
0 0261.63 Hz,  392 Hzf f  , which forms a perfect fifth interval; then in Figure 

A.2, the contour plot of the sum of the bispectra of 4C  and 4G , is shown. In Figure A.1, the 

monophonic 2-D patterns of the two sounds are distinguishable, and also the two additional peaks 

generated by the contribute of the product {1,1,2}Π , located at 01 01(5 , )f f  and 01 01(4 ,2 )f f , which 

appear to have a smaller amplitude. 
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Figure A.1. Contour plot of the bispectrum of 

synthesized bichord 4 4C - G . 
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Figure A.2. Contour plot of the sum of the bispectra of 

two synthesized sounds: 4C  and 4G . 

 
 

Dealing with real sounds, it is impossible to quantify the amplitude contribute given by each 
single term present in 1 2( , )diffB f f , if the number of partials and their amplitude model is not 

known in advance for each concurrent sound. For this reason, it is difficult to perform a general 
qualitative analysis. On the other hand, it is possible to evaluate the normalized 2-D cross-
correlations between both {1,2} 1 2( , )B f f  and 1 1 2 2 1 2( , ) ( , )B f f B f f  with a 2-D pattern, equivalent 

to the one used in the Multi-F0 estimation procedure which is the core of the system proposed in the 
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paper. The results of the two normalized 2-D cross-correlation (denoted as 
{1,2}Bρ  and 

1 2B Bρ  ) and 

the array obtained by subtracting 
{1,2}Bρ  and 

1 2B Bρ  , are shown in Figure A.3. 
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Figure A.3. Comparison of normalized 2-D cross-correlation for 

5-harmonics synthesized bichord 4 4C - G , and the difference of 

them (with a different scale). 
 
 

It can be noted that there are no relevant differences between the two cases (in Figure A.3, 
bottom part reporting the difference, the y-axis scale has been enlarged to make difference array 
more readable).  

Moreover, the same normalized 2-D cross-correlation for other two synthesized sounds has 
been calculated with the same pitch by using 10 harmonics instead of 5. This operation was made in 
order to show that the contribute of 1 2( , )diffB f f  would not affect significantly the values of 2-D 

correlation (and, therefore, the results of Multi-F0 Estimation procedure) with increasing number of 
partials. The results are shown in Figure A.4. 
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Figure A.4. Comparison of normalized 2-D cross-correlation for 

10-harmonics synthesized bichord 4 4C - G , and the difference of 

them (with a different scale). 
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A.4 Bispectrum of a polyphonic signal: qualitative analysis for three or more 

sounds 
 

When a polyphonic audio signal is composed by more than two concurrent sounds, it can be 
shown, by extending the analysis performed for a bichord in section A.2, that the signal bispectrum 
may present additional peaks, with respect to the sum of the bispectra of the single monophonic 
sounds. Even in this case, they do not affect the result of normalized 2-D cross-correlation, since 
they are located at coordinates which do not belong to the generic pattern of a monophonic sound 
(see equation (5), Section III.C of the paper). This is shown in the example reported in Figure A.5 
where the test signal is a trichord 4 4 4C -E -G , which presents strong partials overlapping. Therefore, 

in these cases, the effect of 1 2( , )diffB f f  is null, whereas it is relevant (in the sense of computation 

of 2-D cross-correlation), only for those frequency couples given, in case, by the combinations of 
bichords harmonic sets. If the intersection between the harmonic sets of the concurrent is empty, 

1 2( , )diffB f f  is null. 

f
1
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Magnitude Bispectrum: 5 harmonics synthesized C4-E4-G4 trichord
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Figure A.5. Contour plot of the bispectrum of 5-harmonics synthesized 

trichord 4C - E4  - G4 , and graphical classification of the peaks of the 

residual 1 2 1 2 3 1 2 1 1 2 2 1 2 3 1 2   { , , }( , ) ( , ) ( , ) ( , ) ( , )resB f f B f f B f f B f f B f f . 
 

 
Also in this example, the normalized 2-D cross-correlations 

{1,2,3}Bρ  and 
1 2 3B B Bρ    have been 

calculated for the same test signal 4 4 4C -E -G , though this time it was synthesized with 10 

harmonics. The result is shown in Figure A.6. The contribute of the residual is still to be considered 
not relevant, although this time the difference between 

{1,2,3}Bρ  and 
1 2 3B B Bρ    is slightly higher, 

especially for note 4C  and its sub-octave. This is due to the fact that 4C , being the lowest note 

played in the audio signal, presents partials overlapping with both notes 4E  and 4G . 

 

Page 38 of 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

A.10 
 

0 100 200 300 400 500 600 700 800
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

N
or

m
al

iz
ed

 2
D

 C
ro

ss
-C

or
re

la
tio

n

2D Cross-Correlation Comparison for synthesized C4-E4-G4 trichord (10 harmonics)

0 100 200 300 400 500 600 700 800
0

0,1
0,2
0.6
0,4
0,5
0,6
0,7
0,8
0,9

1

f (Hz)

N
or

m
al

iz
ed

 2
D

 C
ro

ss
-C

or
re

la
tio

n

C4

C4

G
4 2D Correlation between 2D

Pattern and
[B

1
(f

1
,f

2
)+B

2
(f

1
,f

2
)+B

3
(f

1
,f

2
)]

E4

G
4

E
4 2D Correlation between 2D

Pattern and B
{1,2,3}

(f
1
,f

2
)

 

0 100 200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

f
1
 (Hz)

Difference between

B{1,2,3}
 and B

1
+B

2
+B

3

 
Figure A.6. Comparison of normalized 2-D cross-correlation for 

10-harmonics synthesized trichord 4 4 4C - E - G . 
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Appendix B -- Comparison of Multi-F0 estimation procedures 

 Appendix B shows the typical example of what happen when processing a polyphonic signal 
when the two compared methods are used; e.g., direct cancellation on 1-D spectrum, and iterative 
extraction on bispectrum. For this purpose, in this Appendix, an example of Multi-F0 Estimation 
procedure step-by-step, carried out by the transcription system presented in the paper. The results 
are compared with those obtained by a transcription method performing an iterative 1-D pattern 
matching in the spectrum domain, and subsequent direct cancellation of the harmonic pattern of 
estimated notes. 
 The audio input source is a real signal taken from the RWC Database, analyzed in a single 
frame for the purpose of the example. In the processed frame, notes 2G , 4D and 4B  are playing, 

corresponding to MIDI notes 43, 62 and 71, respectively. These notes present a significant partials 
overlapping. Actually, denoting the fundamental frequencies as 01f , 02f  and 03f , respectively, 

they stay in the following ratios each other:  

02 013f f , 03 015f f , 03 02
5

3
f f . 

which are approximated, in the frequency-log scale adopted in our system (following the well-
tempered scale) with distances of 19, 28 and 9 semitones. 

 In Figure B.1 the amplitude spectrum and bispectrum before the F0 estimation process are 
presented. 
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Figure B.1. Amplitude spectrum and bispectrum of audio signal 
before Multi-F0 estimation. 

 
 In Figures (Figures B.2 and B.3) a direct comparison between both the Multi-F0 estimation 
procedures is depicted, by plotting the normalized 1-D and 2-D cross-correlations for each step. 
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Figure B.2. Step by step Multi-F0 estimation procedure with iterative 
spectral 1-D pattern matching and direct cancellation technique. The dots 
identify the notes played in the audio source signal. 
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Figure B.3. Step by step Multi-F0 estimation procedure with iterative 
bispectral 2-D pattern matching and pattern extraction technique. The dots 
identify the notes played in the audio source signal. 
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It should be noted that, the 2-D bispectral correlation is much clearer than the 1-D spectral 
correlation. As stated in the paper (see section III.C), denoting the normalized 2-D cross-correlation 
as 1 2( , )ρ f f , if a monophonic sound has a fundamental frequency corresponding to index q in the 

discrete log-frequency array, then the maximum of 1 2( , )ρ f f  is expected to be found at ( , )q q . For 

this reason, the cross-correlation 1 2( , )ρ f f  is computed only for 1 2f f q  , that is only upon the 

points belonging to the first quadrant bisector. 
 
 Moreover, comparing Figures B.2 and B.3, it can be observed that after Step 1 (in which the 
lowest note 2G  is correctly identified by both the algorithms). On the other hand, the direct 

cancellation of spectral 2G  pattern (in the 1-D F0 estimation method) deletes also some coinciding 

partials of the two higher sounds, including the fundamental frequencies of both 4D  and 4B , as 

shown in Figure B.4. 
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Figure B.4. Graphical comparison between direct cancellation of 1-D 
pattern from the spectrum (above) and extraction of 2-D pattern from the 
bispectrum (below). 

 

 In general, the bispectral representation cannot help to resolve the underlying components of 
interfering partials; while it is the mechanism of extraction of the 2-D monophonic pattern of 2G  in 

the proposed bispectrum-based algorithm which allows keeping critical information about the peak 
positions of the other sounds harmonic 2-D patterns, which are: 

02 02( , 2 )f f , 02 02(2 ,2 )f f  and 03 03( , )f f . 
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 In conclusion, this Appendix B has shown the typical example of what happen when 
processing a polyphonic signal when the two compared methods are used; e.g., direct cancellation 
on 1-D spectrum, and iterative extraction on bispectrum.  
 

Thus, the system performing the iterative 2-D pattern matching and pattern extraction in the 
bispectrum domain successfully identifies all the three notes played in the audio source file. The 
system performing the iterative 1-D pattern matching and direct cancellation of the pattern in the 
spectrum domain identifies only the lowest note, 2G , and commits two false positive errors, due to 

the removal of partials of the higher sounds in the direct cancellation procedure. 
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Automatic transcription of polyphonic music based

on the constant-Q bispectral analysis
Fabrizio Argenti, Senior Member, IEEE, Paolo Nesi, Member, IEEE, and Gianni Pantaleo

August 31, 2010

Abstract—In the area of music information retrieval

(MIR), automatic music transcription is considered one of

the most challenging tasks, to solve which many different

techniques have been proposed. This paper presents a

new method for polyphonic music transcription: a system

that aims at estimating pitch, onset times, durations and

intensity of concurrent sounds in audio recordings, played

by one or more instruments. Pitch estimation is carried

out by means of a front-end that jointly uses a constant-

Q and a bispectral analysis of the input audio signal;

subsequently, the processed signal is correlated with a fixed

2-D harmonic pattern. Onsets and durations detection

procedures are based on the combination of the constant-

Q bispectral analysis with information from the signal

spectrogram. The detection process is agnostic and it

does not need to take into account musicological and

instrumental models or other a priori knowledge. The

system has been validated against the standard RWC

(Real World Computing) - Classical Audio Database. The

proposed method has demonstrated good performances in

the multiple F0 tracking task, especially for piano-only

automatic transcription at MIREX 2009.

Index Terms—Music information retrieval, polyphonic

music transcription, audio signals processing, constant-Q

analysis, higher-order spectra, bispectrum.

I. INTRODUCTION

Automatic music transcription is the process of con-

verting a musical audio recording into a symbolic no-

tation (a musical score or sheet) or any equivalent

representation, usually concerning event information as-

sociated with pitch, note onset times, durations (or

equivalently, offset times) and intensity. This task can be

accomplished by a well ear-trained person, although it

could be quite challenging for experienced musicians as

well; besides, it is difficult to be realized in a completely

automated way. This is due to the fact that human

knowledge of musicological models and harmonic rules

are useful to solve the problem, although such skills are

not easy to be coded and wrapped into an algorithmic

procedure.

An audio signal is composed of a single or a mixture

of approximately periodic, locally stationary acoustic

waves. According to the Fourier representation, any

finite energy signal is represented as the sum of an

infinite number of sinusoidal components weighted by

appropriate amplitude coefficients. An acoustic wave is

a particular case in which, ideally, frequency values of

single harmonic components are integer multiples of the
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first one, called fundamental frequency (which is the per-

ceived pitch). Harmonic components are called partials

or simply harmonics. Since the fundamental frequency

of a sound, denoted as F0, is defined to be the greatest

common divisor of its own harmonic set (actually, in

some cases, the spectral component corresponding to F0

can be missing), the task of music transcription, i.e.,

the tracking of the partials of all concurrent sounds,

is practically reduced to a time periodicities search,

which is equivalent to looking for energy maxima in

the frequency domain. Thus, every single note can be

associated with a fixed and distinct comb-pattern of

local maxima in the amplitude spectrum, which appears

like the one shown in Figure 1. The distances between

energy maxima are expressed as integer multiples of F0

(top) as well as in semitones (bottom): the latter are an

approximation of the natural harmonic frequencies in the

well-tempered system.

 F0 2F0     3F0 4F0    5F0    6F0    7F0

 0           12    19 24     28     31     34

Figure 1. Fixed comb-pattern representing the harmonics set
associated with every single note. Seven partials (fundamental fre-
quency included) with the same amplitude have been considered.
The distances are also expressed (bottom) as semitones.

A. Previous Work

For the monophonic transcription task, some time-

domain methods were proposed based on zero-crossing

detection [1], or on temporal autocorrelation [2].

Frequency-domain based approaches are better suited for

multi-pitch detection of a mixture of sounds. In fact, the

overlap of different period waves makes the task hard to

be solved exclusively in the time-domain.

First attempts of performing polyphonic music tran-

scription started in the late 1970s, with the pioneering

work of Moorer [3] and Piszczalski and Galler [4].

During the years, the commonly-used frequency repre-

sentation of audio signals as a front-end for transcription

systems has been developed in many different ways, and

several techniques have been proposed. Klapuri [5], [6]

performed an iterative predominant F0 estimation and

a subsequent cancelation of each harmonic pattern from

the spectrum; Nawab [7] used an iterative pattern match-

ing algorithm upon a constant-Q spectral representation.

In the early 1990s, other approaches, based on applied

psycho-acoustic models and also known as Computa-

tional Auditory Scene Analysis (CASA), from the work

by Bregman [8], started to be developed. This framework

was focused on the idea of formulating a computational

model of the human inner ear system, which is known to

work as a frequency-selective bank of passband filters;

techniques based on this model, formalized by Slaney

and Lion [9], were proposed by Ellis [10], Meddis

and O’Mard [11], Tolonen and Karjalainen [12] and

Klapuri [13]. Marolt [14] used the output of adaptive

oscillators as a training set for a bank of neural networks

to track partials of piano recordings. A systematic and

collaborative organization of different approaches to the

music transcription problem is at the basis of the idea

of the Blackboard Architecture proposed by Martin [15].

More recently, physical [16] and musicological models,

like average harmonic structure (AHS) extraction in
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[17], as well as other a priori knowledge [18], and

eventually temporal information [19] have been joined

to the audio signal analysis in the frequency-domain

to improve transcription systems performances. Other

frameworks rely on statistical inference, like hidden

Markov models [20], [21], [22], Bayesian networks [23],

[24] or Bayesian models [25], [26]. Others, aiming at

estimating the bass line [27] or the melody and bass

lines [28], [29], were proposed. Currently, the approach

based on non-negative matrix approximation [30] (in its

different versions like non-negative matrix factorization

of spectral features [31], [32], [33]) has received much

attention within the music transcription community.

Higher-order spectral analysis (which includes the

bispectrum as a special case) has been applied to music

audio signals for source separation and instrumental

modeling [34], to enhance the characterization of rel-

evant acoustical features [35], and for polyphonic pitch

detection [36].

More detailed overviews of automatic music transcrip-

tion methods and related topics are contained in [37],

[38].

B. Proposed Method

This paper proposes a new method for automatic

transcription of real polyphonic and multi-instrumental

music. Pitch estimation is here performed through a joint

constant-Q and bispectral analysis of the input audio

signal. The bispectrum is a bidimensional frequency

representation capable of detecting nonlinear harmonic

interactions.

A musical signal produces a typical 1-D pattern of

local maxima in the spectrum domain and, similarly, a

2-D pattern in the bispectrum domain, as illustrated in

Section III-C1. Objective of a multiple F0 estimation

algorithm is retrieving the information relative to each

single note from the polyphonic mixture. A method to

perform this task, in the spectrum domain, consists in

iteratively computing the cross-correlation between the

audio signal and a harmonic template, and subsequently

canceling/subtracting the pattern relative to the detected

note. The proposed method applies this concept, oppor-

tunely adapted, in the bispectral domain.

Experimental results show that using the bispec-

trum analysis yields superior performances than using

the spectrum domain: actually, as described in section

III-C4, the local maxima distribution of the harmonic 2-

D pattern generated in the bispectrum domain is more

useful in gathering multiple-F0 information in iterative

pitch estimation and harmonics extraction / cancelation

methods.

A computationally efficient and relatively fast method

to implement the bispectrum has been realized by using

the constant-Q transform, which produces a multi-band

frequency representation with variable resolution. Note

duration estimation is based on a profile analysis of the

audio signal spectrogram.

The goal of this research is showing the capabilities

and potentialities of a constant-Q bispectrum (CQB)

front-end applied to the automatic music transcription

task. The assessment of the proposed transcription sys-

tem performances has been conducted in the following

way:the proposed method, based on the bispectrum front-

end, and a similar system, based on a simple spectrum

front-end, were compared by using audio excerpts taken
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from the standard RWC (Real World Computing) -

Classical Audio Database [39], which is widely used in

the recent literature for information music retrieval tasks;

the proposed algorithm has demonstrated good perfor-

mances in the multiple F0 tracking task, especially for

piano automatic transcription at MIREX 2009 evaluation

framework. The results of the comparison with the other

participants are reported.

C. Paper Organization

In Section II, the bispectral analysis and the constant-

Q transform are reviewed. Section III contains a detailed

description of the whole architecture and the rules for

pitch, onset and note duration detection. Subsequently,

in section IV, experimental results, validation methods

and parameters are presented. Finally, Section V is left

to conclusions.

II. THEORETICAL PRELIMINARIES

In this section, the theoretical concepts at the basis of

the proposed method are recalled.

A. Musical concepts and notation

In music, the seven notes are expressed with alphabet-

ical letters from A to G. The octave number is indicated

as a subscript. In this paper, the lowest piano octave is

associated with number 0; thus, middle C, at 261 Hz,

is denoted with C4, and A4 (which is commonly used

as a reference tone for instruments tuning) univocally

identifies the note at 440 Hz.

In the well-tempered system, if f1 and f2 are the

frequencies of two notes separated by one semitone

interval, then f2 = f1 · 21/12. Under these conditions

(which approximates the natural tuning, or just tuning),

an interval of one octave, (characterized by f2 = 2f1)

it is composed of 12 semitones. Other examples of

intervals between notes are the perfect fifth (f2 = 3/2 f1,

corresponding to a distance of 7 semitones in the well-

tempered scale), the perfect fourth (f2 = 4/3 f1 or 5

semitones in the well-tempered scale), and the major

third (f2 = 5/4 f1 or 4 semitones in the well-tempered

scale).

B. The Bispectrum

The bispectrum belongs to the class of Higher-Order

Spectra (HOS, or polyspectra), used to represent the

frequency content of a signal. An overview of the theory

on HOS can be found in [40], [41] and [42]. The

bispectrum is defined as the third-order spectrum, being

the amplitude spectrum and the power spectral density

the first and second-order ones, respectively.

Let x(k), k = 0, 1, . . . , K−1, be a digital audio signal,

modeled as a real, discrete and locally stationary process.

The nth order moment, mx
n, is defined [41] as:

mx
n(τ1, . . . , τn−1) = E{x(k)x(k + τ1) . . . x(k + τn−1)},

where E{·} is the statistical mean. The nth order cumu-

lant, cx
n, is defined [41] as:

cx
n(τ1, . . . , τn−1) = mx

n(τ1, . . . , τn−1)−mG
n (τ1, . . . , τn−1),

where mG
n (τ1, . . . , τn−1) are the nth-order moments of

an equivalent Gaussian sequence having the same mean

and autocorrelation sequence as x(k). Under the hypoth-

esis of a zero mean sequence x(k), the relationships

between cumulants and statistical moments up to the
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third order are:

cx
1 = E{x(k)} = 0,

cx
2(τ1) = mx

2(τ1) = E
{
x(k)x(k + τ1)

}
,

cx
3(τ1, τ2) = mx

3(τ1, τ2) = E
{
x(k)x(k + τ1)x(k + τ2)

}
.

(1)

The nth-order polyspectrum, denoted as

Sx
n(f1, f2, . . . , fn−1), is defined as the (n − 1)-

dimensional Fourier transform of the corresponding

order cumulant, that is:

Sx
n(f1, f2, . . . , fn−1) =

+∞∑
τ1=−∞

· · ·
+∞∑

τn−1=−∞
cx
n(τ1, τ2, . . . , τn−1) exp

(
−j2π(f1τ1+f2τ2+. . .+fn−1τn−1)

)
.

The polyspectrum for n = 3 is also called bispectrum.

It is also denoted as:

Bx(f1, f2) = Sx
3 (f1, f2) =

+∞∑
τ1=−∞

+∞∑
τ2=−∞

cx
3(τ1, τ2)e−j2πf1τ1e−j2πf2τ2 .

(2)

The bispectrum is a bivariate function representing some

kind of signal-energy related information, as more deeply

analyzed in the next section. In Figure 2, a contour-plot

of the bispectrum of an audio signal is shown. As can be

noticed, the bispectrum presents twelve mirror symmetry

regions:

Bx(f1, f2) = Bx(f2, f1) = B∗
x(−f2,−f1) = Bx(−f1 − f2, f2) =

= Bx(f1,−f1 − f2) = Bx(−f1 − f2, f1) = Bx(f2,−f1 − f2).

Hence, the analysis can take into consideration

only a single non redundant bispectral region

[43]. Hereafter, Bx(f1, f2) will denote the

bispectrum in the triangular region T with

vertices (0,0), (fs/2,0) and (fs/3,fs/3), i.e., T =
{

(f1, f2) : 0 ≤ f2 ≤ f1 ≤ fs

2 , f2 ≤ −2f1 + fs

}
, which

is depicted in Figure 2, where fs is the sampling

frequency.

Bispectrum
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fr
e
q
u
e
n
c
y
 f

 2
  

(H
z
)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−2000

−1500

−1000

−500

0

500

1000

1500

2000

(F  / 2 ; 0 )

(F  / 3 ; F  / 3 )s s

s

1

2

3

4
5

6

7

8

9

10

11

12

(fs/2 ,0) 

(fs/3, fs/3) 

Figure 2. Contour plot of the magnitude bispectrum, according to
Equation (3), of the trichord F]3(185 Hz), D4(293 Hz), B4(493 Hz)
played on an acoustic upright piano and sampled at fs = 4 kHz. The
twelve symmetry regions are in evidence (clockwise enumerated),
and the one chosen for analysis is highlighted.

It can be shown [41] that the bispectrum of a finite-

energy signal can be expressed as:

Bx(f1, f2) = X(f1)X(f2)X∗(f1 + f2), (3)

where X(f) is the Fourier Transform of x(k), and

X∗(f) is the complex conjugate of X(f).

As in the case of power spectrum estimation, the

estimations of the bispectrum of a finite random process

are not consistent, i.e., their variance does not decrease

with the observation length. Consistent estimations are

obtained by averaging either in the time or in the fre-

quency domain. Two approaches are usually considered,

as described in [41].

The indirect method consists of: 1) the estimation of

the third-order moments sequence, computed as temporal
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average on disjoint or partially overlapping segments of

the signal; 2) estimation of the cumulants, computed

as the average of the third-order moments over the

segments; 3) computation of the estimated bispectrum

as the bidimensional Fourier tansform of the windowed

cumulants sequence.

The direct method consists of: 1) computation of the

Fourier transform over disjoint or partially overlapping

segments of the signal; 2) estimation of the bispectrum in

each segment according to (3) (eventually, frequency av-

eraging can be applied); 3) computation of the estimated

bispectrum as the average of the bispectrum estimates in

each segment.

In this paper, in order to minimize the computational

cost, the direct method has been used to estimate the

bispectrum of an audio signal.

C. Constant-Q Analysis

The estimation of the bispectrum according to (3),

involves computing the spectrum X(f) on each segment

of the signal. In each octave, twelve semitones need to

be discriminated: since the octave spacing doubles with

the octave number, the requested frequency resolution

decreases when the frequency increases. For this reason,

a spectral analysis with a variable frequency resolution

is suitable for audio applications.

The constant-Q analysis [44], [45] is a spectral rep-

resentation that properly fits the exponential spacing of

note frequencies. In the constant-Q analysis, the spectral

content of an audio signal is analyzed in several bands.

Let N be the number of bands and let

Qi =
fi

Bi
,

where fi is a representative frequency, e.g., the highest

or the center frequency, of the ith band and Bi is its

bandwidth. In a constant-Q analysis, we have Qi = Q,

i = 1, 2, . . . , N , where Q is a constant.

A scheme that implements a constant-Q analysis is

illustrated in Figure 3. It consists of a tree structure,

shown in Figure 3-(a), whose building block, shown in

Figure 3-(b), is composed of a spectrum analyzer block

and by a filtering/downsampling block (lowpass filter and

downsampler by a factor two).

Spectrum

Analyzer

Filter &

Decimate

Spectrum

Analyzer

Filter &

Decimate

Spectrum

Analyzer

Filter &

Decimate

Hann 

Window

Fourier

Transform

Lowpass

Filter 2

Spectrum Analyzer

Filter & Decimate

(a) (b)

Figure 3. Octave Filter Bank: (a) building block of the tree,
composed by a spectrum analyzer and by a filtering/downsampling
block; (b) blocks combination to obtain a multi-octave analysis.

The spectrum analyzer consists in windowing the

input signal (Hann window with length NH samples

for each band has been used) followed by a Fourier

transform that computes the spectral content at specified

frequencies of interest. The lowpass filter is a zero-

phase filter, implemented as a linear-phase filter followed

by a temporal shift. Using zero-phase filters allows us

to extract segments from each band that are aligned

in time. The nominal filter cutoff frequency is at π/2.

Due to the downsampling, the NH -samples long analysis

window spans a duration that doubles at each stage.

Therefore, at low frequencies (i.e., at deeper stages of
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the decomposition tree), a higher resolution in frequency

is obtained at the price of a poorer resolution in time.

III. SYSTEM ARCHITECTURE

In this section, a detailed description of the proposed

method for music transcription is presented. First a

general overview is given, then the main modules are

discussed in detail.

A. General Architecture

A general view of the system architecture is presented

in Figure 4. In the diagram, the main modules are de-

picted (with dashed line) as well as the blocks composing

each module.

The transcriptor accepts as input a PCM Wave audio

file (mono or stereo) as well as user-defined parameters

related to the different procedures. The Pre-Processing

module carries out the implementation of the constant-Q

analysis by means of the Octave Filter Bank block. Then,

the processed signal enters both the Pitch Estimation and

Time Events Estimation modules. The Pitch Estimation

module computes the bispectrum of its input, perform the

2-D correlation between the bispectrum and a harmonic-

related pattern, and estimate candidate pitch values.

The Time Events Estimation module is devoted to the

estimation of onsets and durations of notes. The Post-

Processing module discriminates notes from very short-

duration events, seen as disturbances, and produces the

output files: a SMF0 MIDI file (which is the transcription

of the audio source) and a list of pitches, onset times and

durations of all detected notes.

Figure 4. Music transcription system block architecture. The func-
tional modules, inner blocks, input parameters and output variables
and functions are illustrated.

B. The Pre-Processing module

The Octave Filter Bank (OFB) block performs the

constant-Q analysis over a set of octaves whose number

Noct is provided by the user. The block produces the

spectrum samples - computed by using the Fourier

transform - relative to the nominal frequencies of the

notes to be detected in each octave. In order to minimize

detection errors due to partial inharmonicity or instru-

ment intonation inaccuracies, two additional frequencies

aside each nominal value have been considered as well.

The distance between the additional and the fundamen-

tal frequencies is ±2% of each nominal pitch value,

which is less than half a semitone spacing (assumed as

approximately ±3%); the maximum amplitude among

the three spectral lines is associated with the nominal

pitch frequency value. Hence, the number of spectrum
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samples that is passed to the successive blocks for further

processing is Np = 12 Noct, where 12 is the number of

pitches per octave.

As an example, consider that the OFB accepts an

input signal sampled at fs=44100 Hz and consider that

ideal filters, with null transition bandwidth, are used.

The outputs of the first three stages of the OFB tree

cover the ranges (0, 22050), (0, 11025), and (0, 5512.5).

The spectrum analysis works only on the higher-half

frequency interval of each band, whereas the lower-half

frequency interval is to be analyzed in the subsequent

stages. Hence, with the given sampling frequency, in the

first three stages the octaves from F9 to E10, from F8 to

E9, and from F7 to E8, in that order, are analyzed. In

general, in the ith stage, the interval from FNoct+1−i to

ENoct+2−i, i = 1, 2, . . . , Noct, is analyzed.

In the case of non-ideal filters, the presence of a non-

null transition band must be taken into account. Consider

the branches of the building block of the OFB tree,

shown in Figure 3-(b), the first leading to the spectral

analysis sub-block, the second to filtering and down-

sampling sub-block. Notes, whose nominal frequency

falls into the transition band of the filter, can not be

resolved after downsampling and must be analyzed in

the first (undecimated) branch. Useful lowpass filters are

designed by choosing, in normalized frequencies, the

interval (0, γ π) as the passband, the interval (γ π, π/2)

as the transition band, and the interval (π/2, π) as

the stopband; the parameter γ (γ < 0.5) controls the

transition bandwidth.

Hence, the frequency interval that must be considered

into the spectrum analysis step at the first stage is

(γfs/2, fs/2). In the second stage, the analyzed in-

terval is (γfs/4, γfs/2), and, in general, if we define

f
(i)
s = fs/2(i−1) as the sampling frequency of the input

of the ith stage, the frequency interval considered by the

spectrum analyzer block is (apart from the first stage)

(γf
(i)
s /2, γf

(i)
s ). The filter mask H(ω) and the analyzed

regions are depicted in Figure 5.

ππ
2γπ

2 ω

Interval to be

analyzed in

the next

stages

X(ω)

H(ω)

Interval

affected by

aliasing after

decimation

Interval processed by

the spectrum analyzer

Figure 5. Filter mask and the analyzed regions.

Table I summarizes the system parameters we used to

implement the OFB. With the chosen transition band,

the interval from E9 to E10 is analyzed in the first

stage, and the interval from ENoct+1−i to D]Noct+2−i,

i = 2, . . . , Noct, is analyzed in the ith stage. At the

end of the whole process, a spectral representation from

E1 (at 41.203 Hz) to E10 (at 21.096 kHz), sufficient to

cover the extension of almost every musical instrument,

is obtained.

C. Pitch Estimation Module

The Pitch Estimation module receives as input the

spectral information produced by the Octave Filter Bank
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Table I
OFB CHARACTERISTICS

Sampling frequency (fs) 44.1 kHz
Number of octaves (Noct) 9

Frequency range [40 Hz , 20 kHz]
Hann’s window length (NH ) 256 samples

FIR passband (0, 0.46 π)
FIR stopband (π/2, π)

FIR ripples (δ1 = δ2) 10−3

Filter length 187 samples

block. This module includes the Constant-Q Bispec-

tral Analysis, the Iterative 2-D Pattern Matching, the

Iterative Pitch Estimation and the Pitch & Intensity

Data Collector blocks. The first block computes the

bispectrum of the input signal at the frequencies of

interest. The Iterative 2-D Pattern Matching block is in

charge of computing the 2-D correlation between the

bispectral array and a fixed, bi-dimensional harmonic

pattern. The objective of the Iterative Pitch Estimation

block is detecting the presence of the pitches, and

subsequently extracting the 2-D harmonic pattern of

detected notes from the bispectrum of the actual signal

frame. Finally, the Pitch & Intensity Data Collector

block associates energy information to corresponding

pitch values in order to collect the intensity information.

In order to better explain the interaction of harmonics

generated by a mixture of sounds, we first focus on

the application of the bispectral analysis to examples

of monophonic signals, and then some examples of

polyphonic signals are considered.

1) Monophonic signal: Let x(n) be a signal com-

posed by a set H of four harmonics, namely H =

{f1, f2, f3, f4}, fk = k · f1, k = 2, 3, 4, i.e.,

x(n) =
4∑

k=1

2 cos(2πfkn/fs),

X(f) =
4∑

k=1

δ(f ± fk),

where constant amplitude partials have been assumed.

According to (3), the bispectrum of x(n) is given by

Bx(η1, η2) = X(η1)X(η2)X∗(η1 + η2) =

=
( 4∑

k=1

δ(η1 ± fk)
)( 4∑

l=1

δ(η2 ± fl)
)( 4∑

m=1

δ(η1 + η2 ± fm)
)

.

When the products are developed, the only terms dif-

ferent from zero that appear are the pulses located at

(fk, fl), with fk, fl such that fk + fl ∈ H. Hence, we

have

Bx(η1, η2) =δ(η1 ± f1)δ(η2 ± f1)δ(η1 + η2 ± f2) + δ(η1 ± f1)δ(η2 ± f2)δ(η1 + η2 ± f3)

+ δ(η1 ± f1)δ(η2 ± f3)δ(η1 + η2 ± f4) + δ(η1 ± f2)δ(η2 ± f1)δ(η1 + η2 ± f3)

+ δ(η1 ± f2)δ(η2 ± f2)δ(η1 + η2 ± f4) + δ(η1 ± f3)δ(η2 ± f1)δ(η1 + η2 ± f4).

Note that peaks arise along the first and third quadrant

bisector thanks to the fact that f2 = 2f1 and f4 = 2f2.

By considering the non-redundant triangular region T
defined in Section II-B, the above expression can be

simplified into

Bx(η1, η2) =δ(η1 − f1)δ(η2 − f1)δ(η1 + η2 − f2) + δ(η1 − f2)δ(η2 − f1)δ(η1 + η2 − f3)

+ δ(η1 − f3)δ(η2 − f1)δ(η1 + η2 − f4) + δ(η1 − f2)δ(η2 − f2)δ(η1 + η2 − f4).

(4)

Equation (4) can be generalized to an arbitrary number

T of harmonics as follows:

Bx(η1, η2) =
bT/2c∑

p=1

δ(η2−fp)
T−p∑
q=p

δ(η1−fq)δ(η1+η2−fp+q).

(5)
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This formula shows that every monophonic signal gen-

erates a bidimensional bispectral pattern characterized

by peaks positions {(fi, fi), (fi+1, fi), . . . , (fT−i, fi)},

i = 1, 2, . . . , bT
2 c. Such a pattern is depicted in Figure 6

for a synthetic note at a fundamental frequency f1 = 131

Hz, with T = 7 and T = 8.

Bispectrum estimated via the direct method

f
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(a) (b)

Figure 6. Bispectrum of monophonic signals (note C3) synthesized
with (a) T = 7 and (b) T = 8 harmonics.

The energy distribution in the bispectrum domain is

validated by the analysis of real world monophonic

sounds. Figure 7 shows the bispectrum of a C4 note

played by an acoustic piano and a G3 note played by

a violin, both sampled at fs = 44100 Hz. Even if the

number of significant harmonics is not exactly known,

the positions of the peaks in the bispectrum domain

confirm the theoretical behaviour previously shown.

2) Polyphonic signal: Consider the simplest case of

a polyphonic signal: a bichord. Accordingly with the

linearity of the Fourier Transform, the spectrum of a

bichord is the sum of the spectra of the component

sounds. From Equation (3), it is clear that the bis-

pectrum has a non-additivity nature. This means that,

the bispectrum of a bichord is not equal to the sum
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1

(Hz)

fr
e
q
u
e
n
c
y
f 2

 (
H

z
)

Audio Signal Magnitude Bispectrum

400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700

800

900
5 10 15

x 10
−6

261 Hz

261 Hz

frequency f
1

(Hz)

fr
e
q
u
e
n
c
y
f 2

(H
z
)

Audio Signal Magnitude Bispectrum

400 600 800 1000 1200 1400 1600
100

300

400

500

600

700

800

900

1000
2 4 6

x 10
−5

196 Hz

196 Hz

(a) (b)

Figure 7. Bispectrum of (a) a C4 (261 Hz) played on a upright
piano, and of (b) a G3 (196 Hz) played on a violin (bowed). Both
sounds have been sampled at 44100 Hz.

of the bispectra of component sounds, as described in

Appendix A. In order to be more specific, two examples,

in which the two notes are spaced by either a major

third or a perfect fifth interval, are considered; such

intervals are characterized by a significant number of

overlapping harmonics. Figures 8-(a) and 8-(b) show the

bispectrum of synthetic signals representing the intervals

C3 − E3 and C3 − G3, respectively. For each note, ten

constant-amplitude harmonics were synthesized. The top

row plots in Figures 8-(a) and 8-(b) demonstrate the

spectrum of the synthesized audio segments, from which

the harmonics of the two notes are apparent. Overlapping

harmonics, e.g., the frequencies 5i ·F0C3
= 4i ·F0E3

for

the major third interval, with i an integer, can not be

resolved. In Figure 9, the bispectrum of a real bichord

produced by two bowed violins, playing the notes A3

(220 Hz) and D4 (293 Hz), is shown. The interval is a

perfect fourth (characterized by a fundamental frequen-

cies ratio equal to 4:3, corresponding to a distance of 5

semitones in the well-tempered scale), so that each third
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harmonic of D4 overlaps with each fourth harmonic of

A3. Both in the synthetic and in the real sound examples,

the patterns relative to each note are distinguishable,

apart from a single peak on the quadrant bisector.

In Appendix A, the bispectrum of polyphonic sound

is theoretically treated, together with some examples. In

particular, the cases regarding polyphonic signals with

two or more sounds have been considered. In the case

of bichords, one of the most interesting cases, being a

perfect fifth interval, since it presents a strong partials

overlap ratio. In this case, the analysis of residual coming

from the difference of the real bispectrum of the bichord

signal with respect to the linear composition of the single

bispectra of concurrent sounds, has been performed. The

formal analysis has demonstrated that the contributions

of this residual are null or negligible for proposed multi-

F0 estimation procedure. This theoretical analysis has

been also confirmed by the experimental results, as

shown with some examples. Moreover, the case of tri-

chord with strong partial overlapping and a high number

of harmonics per sound has confirmed the same results.

3) Harmonic pattern correlation: Consider a 2-D

harmonic pattern as dictated by the distribution of the

bispectral local maxima of a monophonic musical signal

expressed in semitone intervals. The chosen pattern,

shown in Figure 10, has been validated and refined by

studying the actual bispectrum computed on several real

monophonic audio signals. The pattern is a sparse matrix

with all non-zero values (denoted as dark dots) set to one.

The Iterative 2-D Pattern Matching block computes
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Figure 8. Spectrum and bispectrum generated by (a) a major third
C3 − E3 and (b) a perfect fifth interval C3 − G3. Ten harmonics
have been synthesized for each note. The regions into dotted lines
in the bispectrum domain highlight that local maxima of both single
monophonic sounds are clearly separated, while they overlap in the
spectral representation.

the similarity between the actual bispectrum (produced

by the Constant-Q Bispectral Analysis by using the

spectrum samples given by the Octave Filter Bank block)

of the analyzed signal and the chosen 2-D harmonic

pattern. Since only 12Noct spectrum samples (at the

fundamental frequencies of each note) are of interest,

the bispectrum results to be a 12Noct×12Noct array.The

cross-correlation between the bispectrum and the pattern

is given by:

ρ(k1, k2) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(k1 + m1, k2 + m2)| ,
(6)

where 1 6 k1, k2 6 12Noct are the frequency indexes

(spaced by semitone intervals), and P denotes the sparse

RP×CP 2-D harmonic pattern array. The ρ coefficient is

assumed to take a maximum value when the template ar-
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Figure 9. Detail (top figure) of the bispectrum of a bichord (A3 at
220 Hz and D4 at 293 Hz), played by two violins (bowed), sampled
at 44100 Hz. The arrow highlights the frequency at 880 Hz, where
the partials of the two notes overlap in the spectrum domain.

ray P exactly matches the distribution of the peaks of the

played notes. If a monophonic sound has a fundamental

frequency corresponding to index q, then the maximum

of ρ(k1, k2) is expected to be positioned at (q, q), upon

the first quadrant bisector. For this reason, ρ(k1, k2) is

computed only for k1 = k2 = q and denoted in the

following as ρ(q). The 2-D cross-correlation computed

in this way is far less noisy than the 1-D cross-correlation

calculated on the spectrum (as illustrated in the example

in Appendix B). Finally, the ρ array is normalized to the

maximum value over each temporal frame.

The Iterative 2-D Pattern Matching block output is

used by the Iterative Pitch Estimation block, whose task

is ascertaining the presence of multiple pitches in an

0 12 19 24 28 31

12

19

Distance in 

semitones

Distance in 

semitones

Figure 10. Fixed 2-D harmonic pattern used in the validation tests
of the proposed music transcriptor. It represents the theoretical set
of bispectral local maxima for a monophonic 7-partials sound all
weights are set equal to unity.

audio signal.

4) Pitch Detection: (4a) - Recall on Spectrum Do-

main. Several methods based on pattern matching in

the spectrum domain were proposed for multiple-pitch

estimation [5], [6], [7], [46]. In these methods, an

iterative approach is used. First, a single F0 is estimated

by using different criteria (e.g., maximum amplitude,

or lowest peak-frequency); then, the set of harmonics

related to the estimated pitch is directly canceled from

the spectrum and the residual is further analyzed un-

til its energy is less than a given threshold. In order

not to excessively degrade the original information, a

partial cancelation (subtraction) can be performed based

on perceptual criteria, spectral smoothness, etc. The

performance of direct/partial cancelation techniques, on

the spectrum domain, significantly degrades when the

number of simultaneous voices increases.

(4b) - Proposed Method. The method proposed in

this paper uses an iterative procedure for multiple F0

estimation based on successive 2-D pattern extraction in
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the bispectrum domain. Consider two concurrent sounds,

with fundamental frequencies Fl and Fh (Fl < Fh),

such that Fh : Fl = m : n. Let Fov = nFh = mFl

be the frequency value of the first overlapping partial.

Consider now the bispectrum generated by the mixture

of the two notes (as an example, see Figure 8). A set

of peaks is located at the same abscissa Fov, that is

at the co-ordinates (Fov, klFl) and (Fov, khFh), where

kl = 1, 2, . . . , m − 1, kh = 1, 2, . . . , n − 1. Hence, the

peaks have the same abscissa but are separated along

the y-axis. If, for example, Fl is detected as the first F0

candidate, extracting its 2-D pattern from the bispectrum

does not completely eliminate the information carried

by the harmonic Fov related to Fh, that is the peaks at

(Fov, khFh) are not removed. On the contrary, if Fh is

detected as the first F0 candidate, in a similar way the

peaks at (Fov, klFl) are not removed. This is strongly

different than in methods based on direct harmonic can-

celation in the spectrum, where the cancelation of the 1-

D harmonic pattern, after the detection of a note, implies

a complete loss of information about the overlapping

harmonics of concurrent notes.

The proposed procedure can be summarized as fol-

lows:

1) Compute the 2-D correlation ρ(q) between the

bispectrum and the chosen template, only upon the

first quadrant bisector:

ρ(q) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(q + m1, q + m2)| ,
(7)

derived directly from Equation (6)

2) Select the frequency value q0 yielding the highest

peak of ρ(q) as the index of a candidate F0;

3) Cancel the entries of the bispectrum array that

correspond to the harmonic pattern having q0as

fundamental frequency;

4) Repeat steps 1-3 until the energy of the residual

bispectrum is higher than θEEB , where θE , 0 <

θE < 1 is a given threshold and EB is the initial

bispectrum energy.

Once multiple F0 candidates have been detected, the

corresponding energy values in the signal spectrum are

taken by the Pitch & Intensity Data Collector block,

in order to collect also the intensity information. The

output of this block is the array π(t, q), computed over

the whole musical signal, where q is the pitch index and

t is the discrete time variable over the frames: π(t, q)

contains either zero values (denoting the absence of a

note) or the energy of the detected note. This array

is used later in the Time Events Estimation module to

estimate note durations, as explained in the next section.

In Appendix B, an example of multiple F0 estimation

procedure, carried out by using the proposed method

is illustrated step by step. Results are compared with

those obtained by a transcription method performing a

1-D direct cancelation of the harmonic pattern in the

spectrum domain. The test file is a real audio signal,

taken from RWC Music Database [39], analyzed in a

single frame.

In conclusion, the component of the spectrum at the

frequency Fov is due to the combination of two harmon-

ics related to the notes Fl and Fh. According to eq. (3),

the spectrum amplitude at Fov affects all the peaks in

the bispectrum located at (Fov, klFl) and (Fov, khFh).
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Interference of the two notes occurring at these peaks is

not resolved; nevertheless, we deem that the geometry of

the bispectral local maxima is a relevant information that

is an added value of the bispectral analysis with respect

to the spectral analysis, as experimental results confirm.

D. Time Events Estimation

The aim of this module is the estimation of the tempo-

ral parameters of a note, i.e., onset and duration times.

The module is composed of three blocks, namely the

Time-Frequency Representation block, the Onset Times

Detector block, and the Notes Duration Detector block.

The Time-Frequency Representation block collects the

spectral information X(f) of each frame, used also to

compute the bispectrum, in order to represent the signal

in the time-frequency domain. The output of this block

is the array X(t, q), where t is the index over the frames,

and q is the index over pitches, 1 6 q 6 12Noct.

The Onset Times Detector block uses the variable

X(t, q) to detect the onset time of the estimated notes,

which is related to the attack stage of a sound. Me-

chanical instruments produce sounds with rapid volume

variations over time. Four different phases have been

defined to describe the envelope of a sound, that is

Attack, Decay, Sustain and Release (ADSR envelope

model). The ADSR envelope can be extracted in the

time domain - without using spectral information -

for monophonic audio signals, whereas this approach

results less efficient in a polyphonic context. Several

techniques [47], [48], [49] have been proposed for onset

detection in the time-frequency domain. The methods

based on the phase-vocoder functions [48], [49] try to

detect rapid spectral-energy variations over time: this

goal can be achieved either by simply calculating the

amplitude difference between consecutive frames of the

signal spectrogram or by applying more sophisticated

functions. The method proposed in this paper uses the

Modified Kullback-Liebler Divergence function, which

achieved the best performance in [50]. This function

aims at evaluating the distance between two consecutive

spectral vectors, highlighting large positive energy vari-

ations and inhibiting small ones. The modified Kullbak-

Liebler divergence DKL(t) is defined by:

DKL(t) =
12Noct∑

q=1

log
(

1 +
|X(t, q)|

|X(t− 1, q)|+ ε

)
,

where t ∈ [2, . . . , M ], with M the total number of frames

of the signal; ε is a constant, typically ε ∈ [10−6, 10−3],

which is introduced to avoid large variations when

very low energy levels are encountered, thus preventing

DKL(t) to diverge in proximity of the release stage of

sounds. DKL(t) is an (M−1)-element array, whose local

maxima are associated with the detected onset times.

Some example plots of DKL(t) are shown in Figure 11.

The Notes Duration Detector block carries out the

estimation of notes duration. The beginning of a note

relies on the DKL(t) onset locations. The end of a

note is assumed to coincide with the release phase of

the ADSR model and is based on the time-frequency

representation. A combination of the information coming

from both the functions X(t, q) and π(t, q) (the latter

computed in the Pitch Estimation module, see III-C4)

is used, as described below. The rationale for using this

approach stems from the observation of the experimental
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Figure 11. Results of onset detection procedure obtained applying
the Modified Kullback-Liebler Divergence over audio spectrogram
for two fragments from RWC - Classical Database: (a) 7 seconds
extracted from Mozart’s String Quartet n. 19, K465; (b) the first 30
seconds of Mozart’s first movement of Sonata for piano in A major
K331.

results: π(t, q) supplies a robust but time-discontinuous

representation of the detected notes, whereas X(t, q)

contains more robust information about notes duration.

The algorithm is the following:

For each q̄ such that ∃π(t, q̄) 6= 0 for some t, do:

1) Execute a smoothing (simple averaging) of array

X(t, q̄) along the t-axis;

2) Identify the local maxima (peaks) and minima

(valley) of the smoothed X(t, q̄);

3) Select from consecutive peak-valley points the

couples whose amplitude difference exceed a given

threshold θpv;

4) Let (V1, P1) and (P2, V2) be two consecutive

valley-peak and peak-valley couples that satisfy the

previous criterion: the extremals (V1, V2) identify

a “possible note” event;

5) For each “possible note” event, do:

a) Estimate (V̄1, V̄2) ⊂ (V1, V2) such that

(V̄1, V̄2) contains a given percentage of the

energy in (V1, V2);

b) Set the onset time ONT of the note equal to

the maximum of the DKL(t) array nearest to

V̄1;

c) Set the offset time OFFT of the note equal

to V̄2;

d) If π(t, q̄), with t ∈ (ONT ,OFFT ) contains

non-zero entries, then a note at the pitch

value q̄, beginning at ONT and with duration

OFFT - ONT is detected.

E. System Output Data

The Post-Processing module tasks are the following.

First, a cleaning operation in the time-domain is made

in order to delete events having a duration shorter than

a user defined time tolerance parameter TTOL. Then,

all the information concerning the estimated note is

tabulated into an output list file. These data are even-

tually sent to a MIDI Encoder (taken from the Matlabr

MIDI Toolbox in [51]), which generates the output MIDI

SMF0 file, provided that the user defines a tempo value

TBPM , expressed in beats per minute.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, the experimental tests that have been

set up to assess the performances of the proposed method

are described. First, the evaluation parameters are de-

fined. Then, some results obtained by using excerpts

from the standard RWC-C database are shown, in order

to highlight the advantages of the bispectrum approach

with respect to spectrum methods based on direct pattern

cancellation. Finally, the results of the comparison of the
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proposed method with others participating at the MIREX

2009 contest are presented.

A. Evaluation parameters

In order to assess the performances of the proposed

method, the evaluation criteria that have been proposed

in MIREX 2009, specifically those related to the mul-

tiple F0 estimation (frame level and F0 tracking), were

chosen.

The evaluation parameters are the following [52]:

• Precision: the ratio of correctly transcribed pitches

to all transcribed pitches for each frame, i.e.,

Prec =
TP

TP + FP
,

where TP is the number of the true positives

(correctly transcribed voiced frames) and FP is

the number of false positives (unvoiced note-frames

transcribed as voiced).

• Recall: the ratio of correctly transcribed pitches to

all ground truth reference pitches for each frame,

i.e.,

Rec =
TP

TP + FN
,

where FN is the number of false negatives (voiced

note-frames transcribed as unvoiced).

• Accuracy: an overall measure of the transcription

system performance, given by

Acc =
TP

TP + FN + FP
.

• F-measure: a measure yielding information about

the balance between FP and FN , that is

F-measure = 2× Prec× Rec
Prec + Rec

.

B. Validation of the proposed method by using the RWC-

C database

1) Experimental data set: The performances of the

proposed transcription system have been evaluated by

testing it on some audio fragments taken from the

standard RWC - Classical Music Database. The sample

frequency is 44.1 kHz and a frame length of 256 samples

(which is approximately 5.8 ms) have been chosen.

For each audio file, segments containing one or more

complete musical phrases have been taken, so that the

excerpts have different time lengths. In Table II, the main

features of the used test audio files are reported. The set

includes about 100000 one-frame-long voiced events.

Table II
TEST DATA SET FROM RWC - CLASSICAL DATABASE. VN(S):
VIOLIN(S); VLA: VIOLA; VC: CELLO; CB: CONTRABASS; CL:

CLARINET

# Author Title Catalog Number Instruments
Data RWC-MDB
(1) J.S. Bach Ricercare a 6, BWV 1079 C-2001 n. 12 2 Vns, Vc
(2) W. A. Mozart String Quartet n. 19, K 465 C-2001 n. 13 Vn, Vla, Vc, Cb
(3) J. Brahms Clarinet Quintet, op. 115 C-2001 n. 17 Cl, Vla, Vc
(4) M. Ravel Ma Mï£¡re l’Oye, Petit Poucet C-2001 n. 23B Piano
(5) W. A. Mozart Sonata K 331, 1st mov. C-2001 n. 26 Piano
(6) C. Saint - Saëns Le Cygne C-2001- n. 42 Piano and Violin
(7) G. Faurï£¡ Sicilienne, op. 78 C-2001 n. 43 Piano and Flute

The musical pieces were selected with the aim of

creating an heterogeneous dataset: the list includes piano

solo, piano plus soloist, strings quartet and strings plus

soloist recordings. Several metronomic tempo values

were chosen.

The proposed transcription system has been realized

and tested in Matlabr environment installed on a dual

core 64-bit processor 2.6 GHz with 3 GB of RAM. With

this equipment, the system performs the transcription in
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a period which is approximately fifteen times the input

audio file duration.

2) Comparison of bispectrum and spectrum based

approaches: In this section, the performances of bis-

pectrum and spectrum based methods for multiple F0

estimation are compared. The comparison is made on

a frame-by-frame basis, that is every frame of the

transcribed output is matched with every corresponding

frame of the ground truth reference of each audio sample,

and the mismatches are counted.

The proposed bispectrum based algorithm, referred to

as BISP in the following, has been described in Section

III-C. A spectrum-based method, referred to as SP1 in

the following, is obtained in a way similar to the pro-

posed method by making the following changes: 1) the

bispectrum front-end is substituted by a spectrum front-

end; 2) the 2-D correlation in the bispectrum domain,

using the 2-D pattern in Figure 10, is substituted by a

1-D correlation in the spectrum domain, using the 1-

D pattern in Figure 1. Both bispectrum and spectrum

based algorithms are iterative and perform subsequent

2-D harmonic pattern extraction and 1-D direct pattern

cancelation, after an F0 has been detected. The same

pre-processing (constant-Q analysis), onset and duration,

and post-processing modules have been used for both

algorithms. A second spectrum-based method, referred

to as SP2 in the following, in which F0 estimation is

performed by simply thresholding the 1-D correlation

output without direct cancelation, has been also consid-

ered.

The frame-by-frame evaluation method requires a

careful alignment between the ground truth reference and

the input audio. The ground truth reference data have

been obtained from the MIDI files associated to each

audio sample. The RWC-C Database reference MIDI

files, even though quite faithful, do not supply an exact

time correspondence with the real audio executions.

Hence, time alignment between MIDI files and the signal

spectrogram has been carefully checked. An example of

the results of the MIDI-spectrogram alignment process

is illustrated in Figure 12.
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Figure 12. Graphical view of the alignment between reference MIDI
file data (represented as rectangular objects) and the spectrogram of
the corresponding PCM Wave audio file (b). The detail shown here is
taken from a fragment of Bach’s Ricercare a 6, The Musical Offering,
BWV 1079 (a), which belongs to the test data set.

The performances of algorithms BISP, SP1 and SP2

applied to the audio data set described in section IV-B1

are shown in Tables III, IV and V. The Tables show the

overall accuracy and the F-measure evaluation metrics,

as well as the TP, FP and FN for each audio sample. A

comparison of the results is presented in Figure 13, and

a graphical comparison between the output of BISP and

SP1 is shown in Figure 15. In Figure 14, a graphical view

of the matching between the ground truth reference and

the system piano-roll output representations is illustrated.
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The results show that the proposed BISP algorithm

outperforms spectrum based methods. BISP shows an

overall accuracy of 57.6%, and an F-measure of 72.1%.

Since pitch detection is performed in the same way,

such results highlight the advantages of the bispectrum

representation with respect to spectrum one. The results

are encouraging considering also the complex polyphony

and the multi-instrumental environment of the test audio

fragments.

The comparison with other automatic transcription

methods is demanded to the next section, where the

results of the MIREX 2009 evaluation framework are

reported.

Table III
BISP: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA

SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 11025 2482 5038 59.4 74.6
(2) 6584 4401 2158 2223 50.1 66.8
(3) 12652 8865 2079 3787 60.2 75.1
(4) 12424 10663 2655 1761 70.8 82.8
(5) 6054 4120 1294 1934 56.1 71.8
(6) 20032 15122 6746 4910 56.5 72.2
(7) 21653 16563 9933 5090 52.4 68.8

TOTAL 95412 70759 27347 24743 57.6% 72.1%

C. Results from MIREX 2009

The Music Information Retrieval Evaluation eXchange

(MIREX) is the community-based framework for the

formal evaluation of Music Information Retrieval (MIR)

systems and algorithms [53]. In 2009, MIREX has

reached its fifth running. The proposed BISP method

has been submitted for an evaluation and a comparison

with the other participants in the field of Multiple Fun-

damental Frequency Estimation & Tracking, which is

divided into the following tasks: 1) Multiple Fundamen-

tal Frequency Estimation (MF0E); 2A) Mixed Set Note

Tracking (NT); and 2B) Piano Only Note Tracking. Task

1 is a frame level evaluation (similar to that described

in section IV-B2) of the submitted methods. Task 2

considers as events to be detected notes characterized by

pitches, onset and offset times. For a specific definition

of tasks and evaluation criteria, the reader should refer

to [54]. Two different versions of the proposed system

have been submitted to MIREX: they are referred to as

NPA1 and NPA2 as team-ID. The differences between

the two versions regard mainly the use of the Time

Events Estimation module: NPA1 simply performs a

multiple-F0 estimation without onset and duration times

detection, whereas NPA2 uses the procedures described

in Section III-D. As a result, NPA2 has reported better

results than NPA1 in all the three tasks considered.

A detailed overview of the overall performance results

is available at [55], see section Multiple Fundamental

Frequency Estimation and Tracking Results.

For Task 1 (MF0E), accuracy has been chosen as a

key performance indicator. The proposed system NPA2

is mid-level ranked, with an accuracy of 48%; any-

way, it presents the second highest recall rate (76%);

this demonstrates that the proposed system has a good

capability in detecting ground truth reference notes,

showing a tendency in detecting more false positives

than false negatives. For Task 2A (Mixed Set NT) and

Task 2B (Piano Only NT), F-measure has been chosen

as the overall performance indicator. In Task 2A, the

proposed system NPA2 has achieved the third highest F-

measure rate and the second highest recall rate; again the
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Table IV
SP1: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10348 6327 5715 46.4 63.2
(2) 6584 3216 2021 3318 38.0 54.6
(3) 12652 6026 8187 6626 29.0 44.9
(4) 12424 10363 3920 2061 63.8 77.6
(5) 6054 4412 4542 1642 42.0 58.8
(6) 20032 9952 7558 10080 36.2 53.0
(7) 21653 11727 9813 9926 37.4 54.3

TOTAL 95412 56044 42368 39368 40.7% 57.8%

Table V
SP2: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10234 7857 5829 42.8 59.9
(2) 6584 2765 2243 3769 31.5 47.9
(3) 12652 6206 9590 6446 27.9 43.6
(4) 12424 9471 3469 2953 59.6 74.7
(5) 6054 3642 3844 2412 36.8 53.8
(6) 20032 7769 6692 12263 29.1 45.0
(7) 21653 10399 8023 11254 35.0 51.9

TOTAL 95412 50486 41718 44926 36.8% 53.8%

precision rate show a quite high false positive detection

rate. In Task 2B, the proposed system NPA2 is top-

ranked, outperforming all the other competitors’ systems.

Results of MIREX 2009 are summarized in Figures

16-18

YR2 YR1 DHP2 DHP1 ZL NEOS2 NPA2 NPA1 NEOS1 RS2 RS1 BVB
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0.7

0.8
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1

MIREX Task 1: Multiple Fundamental Frequency Estimation (MF0E)

Overall Accuracy

Precision Rate

Recall Rate

Figure 16. Results of MIREX 2009 evaluation task 1: Multiple F0
estimation on a frame by frame level (MF0E). The system proposed
in this paper has been submitted in two different versions, referred
to as NPA1 and NPA2, from the name of the authors.
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Figure 17. Results of MIREX 2009 evaluation task 2A: Mixed-set
note tracking (NT).

V. CONCLUSIONS

In this paper a new technique for automatic transcrip-

tion of real, polyphonic and multi-instrumental music has

been presented. The system implements a novel front-

end, obtained by a constant-Q bispectral analysis of the
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Figure 13. Results of comparison between bispectrum based (BISP) and spectrum based (SP1 and SP2) multi-F0 estimation methods. SP1
performs iterative pitch estimation and harmonic pattern subtraction; SP2 performs simple thresholding of cross-correlation measure.

(a) (b)

Figure 14. Graphical (piano-roll) view of event matching between the ground truth reference and transcribed MIDI (b), related to Ravel’s
Ma Mï£¡re l’Oye - Petit Poucet (a), present in the test data set.

input audio signal, which offers advantages with respect

to lower dimensional spectral analysis in polyphonic

pitch estimation. In every frame, pitch estimation is

performed by means of a 2-D correlation between signal

bispectrum and a fixed bi-dimensional harmonic pattern,

while information about intensity of detected pitches

is taken directly from the magnitude spectrum. Onset

times are detected by a procedure that highlights large

energy variations between consecutive frames of the

time-frequency signal representation. Such a represen-

tation is also the basis for note durations estimation:

a pitch against time representation of detected notes is

compared with the audio spectrogram; the duration of

each detected note event in the former is adjusted to
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Figure 15. Graphical comparison between piano-roll output of BISP and SP1, and the reference ground truth data. The test audio example
is a fragment of the 3rd variation of Mozart’s Piano Sonata K 331.
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Figure 18. Results of MIREX 2009 evaluation task 2B: Piano-only
note tracking (NT).

the duration of corresponding event in the latter. All

these data concerning pitches, onset times, durations and

volumes are tabulated and output as a numerical list and

a standard MIDI file is produced.

The capabilities and the performance of the proposed

transcription system have been compared with a spec-

trum based transcription system. The evaluation data set

has been extracted from the standard RWC - Classical

Database; for this purpose the whole architecture has

been left the most general as possible, without intro-

ducing any a priori knowledge. Standard parameters

have been used for validation. Our system successfully

identified over 57% of voiced events, with an overall

F-measure of 72.1%. Finally, a comparison with other

methods have been made within the MIREX 2009 eval-

uation framework, in which the proposed system has

achieved good rankings: in particular, it has been top

ranked in the piano-only tracking task. The MIREX

results show a very good overall recall rate in all the

three tasks the proposed system was submitted to. The

weakest aspect seems to be a still quite high false positive

rate, which affects the precision rate. This could be
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further improved with the introduction of physical / mu-

sicological / statistical models, or any other knowledge

that may be useful to solve the challenging task of

music transcription. The added values of the proposed

solution, with respect to the methods based on multi-

F0 estimation via direct cancellation on the spectrum

domain, are the less leakage of information in presence

of partial overlapping, and the computation of a clearer

2-D cross-correlation which leads to stronger decision

capabilities.
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