
A Knowledge Base Driven Solution for Smart Cloud Management

Pierfrancesco Bellini, Daniele Cenni, Paolo Nesi
Distributed Systems and Internet Technology Lab http://www.disit.dinfo.unifi.it

Department of Information Engineering http://www.dinfo.unifi.it
University of Florence, http://www.unifi.it,Florence,Italy

Email: {pierfrancesco.bellini, daniele.cenni, paolo.nesi}@unifi.it

Abstract—

Keywords-cloud computing; smart cloud; knowledge base;
elastic computing; scaling;

I. INTRODUCTION

Almost all relevant infrastructures are using cloud based
approaches to manage their resources, and set up high
availability solutions addressing different layers such as
IaaS, PaaS, and SaaS. Several different vendors are covering
different aspects and supporting different services natively
into the cloud solutions. Most of them provide specific
products addressing only a limited number of features and
services. On the other hand, the availability of a wide range
of services is often the basis for selecting different cloud
solutions. Among the requested services, there is the need of
monitoring, changing, moving virtual machines and services
in the same cloud for resource optimization and among
different clouds to increasing reliability and for migration
purposes. To this end, the modeling and formalization of
cloud resources and information are becoming more relevant
to formalize different aspects of a cloud at its different levels:
IaaS, PaaS, SaaS, and towards specific resources: hosts,
virtual machines, networks, memory, storage, processes,
services, applications, etc., and their relationships. Cloud
infrastructures are becoming every year more complex to
be managed especially for process configure and reconfig-
uration, dynamic scaling for elastic computing, healthiness
control, etc. Several thousands of different resource defini-
tions are available and corresponding relationships among
entities on the cloud can be established. Thus, every day
new models and types are added, increasing complexity
and demanding a very high level of flexibility in cloud
management and definitions. These can be related to struc-
tures and resources on cloud (hosts, VM, services, storages,
process, applications, nets, etc.), on their corresponding
service level agreements, SLA; and on the metrics to be
assessed for computing the business costs of the business on
cloud in ”as a service” basis. A review about SLAs offered
by commercial Cloud Providers can be obtained from [5].
The aim of the smart cloud solutions can be focused on:
(i) facilitating interoperability among public and private
clouds, and/or among different cloud segments managed
by different cloud orchestrators or managers, (ii) formal

verification and validation of resource cloud configuration
(a-priori or a-posteriori with respect to the deploy; when it
is a-priori, it can be regarded as a sort of simulation), (iii)
discovering and brokering services and resources, (iv) com-
puting cloud simulation, (v) reasoning and adapting cloud
workload conditions, (vi) reasoning about cloud security,
(vii) computing capability for horizontal or vertical scaling,
thus elastic computing. In the literature, these aspects are
addressed in different manners. Some of them into SLA
brokers such as in [6], [1], while for the minimal monitoring
you can see [9]. The work presented in the paper reports
a Smart Cloud solution based on a Knowledge Base, KB,
definition for modeling cloud resources, models, SLA, and
their evolution. The adoption of a knowledge base approach
to model the cloud knowledge with a cloud ontology and
its instances can be a solution to enable the reasoning on
cloud structures, and thus for implementing strategies of
smart cloud management and intelligence. In the seminal
work [3], an approach to create a cloud ontology has been
proposed decomposing problems into five layers: applica-
tions, software environments, software infrastructure, soft-
ware kernel, and hardware. In mOSAIC EC project [4], the
cloud knowledge modeling has been addressed with the aim
of creating a common model to cope with the heterogeneity
of different clouds vendors, and with systems with different
terminology. Currently there are several efforts in build-
ing smart cloud solutions grounded on ontology on cloud
computing [2]. The proposed Smart Cloud solution can be
easily exploited in connection with other cloud tools such as
configurators, orchestrators, monitoring, etc. Thanks to the
KB, the proposed Smart Cloud is particularly suitable for
managing complex configurations, related SLA and related
strategies for dynamic scaling and elastic computing. The
proposed solution has been developed into ICARO cloud
project and tested on the cloud infrastructure of Computer
Gross. Computer Gross is a cloud service provider for IaaS,
PaaS and SaaS, in which allocated applications as SaaS
level are provided by several different vendors and belong to
categories of multitier solutions for CRM (Customer Rela-
tionship Management), ERP (Enterprise Resource Planner),
workflow, marketing, business intelligence, etc. This variety
increase complexity in the cloud management, and motivate
the need of flexible smart cloud engine. The validation phase



of Smart Cloud solution proposed has been focused on
assessing its effectiveness with respect to the automation
of scaling, dynamic scaling, reconfiguration, and continuous
verification of SLA and resource healthiness. This paper is
structured as follows. In Section II, the ICARO Smart Cloud
architecture is presented in relationships with the typical
elements of the cloud. Section III describes the Knowledge
Base ontology for modeling the cloud model and enabling
reasoning and configurations, status conditions, and SLA. In
Section IV the structure and solution for the Smart Cloud
Engine is presented. Section V depicts some experimental
results that can give you the effectiveness of the solution
proposed. Conclusions are given in Section VI.

II. ARCHITECTURE

The proposed Smart Cloud solution addresses some the
above issued presented in the introduction, coping with
complex business configurations deployed on the cloud and
coming from multiple software providers. It is a knowledge
base driven solution for smart cloud management, providing
more flexibility and programmability with respects to state
of the art and commercial solutions. In most of the cloud
management systems a set of configurations are offered to
the cloud buyers and produced by a Cloud Configuration
Manager, CCM. These business configurations, as well as
the changes of configurations, are typically deployed on the
cloud by using an Orchestrator (for example VCO, MS, etc.
as well as other open source solutions), that has also the duty
of setting up the monitoring and supervising activities, and in
some case also the smart cloud, as in the IBM solution, with
limited capabilities. Most of the commercial Smart Cloud
solutions have limited capabilities in setting up scaling rules
(vertical and horizontal, elastic, etc.), while have limited
capabilities in defining and detecting complex conditions
for activating changes in the cloud. The architecture of the
proposed Smart Cloud solution is reported in Figure 1. It
centrally includes a Smart Cloud Engine, SCE, that can be
invoked by any CCM or Orchestrator, for: (i) registering
new business configurations and corresponding SLA; (ii)
requesting verification and validation tasks on a business
configuration, and receiving back suggestions and hints
related to consistency and completeness; (iii) requesting the
control activation for monitoring and SLA; (iv) activating
reshaping (e.g., dynamic scaling, cloning, moving, rules) for
each business configuration according to some articulated
firing condition; (v) controlling healthiness of a business
configuration and each related resource and service.

In order to perform these activities the SCE exploits (i)
a Knowledge Base, KB, in which business configurations
and cloud models are registered, (ii) a set of strategies.
The process of modeling the cloud knowledge allows at the
KB to automatically program the Supervisor and Monitor
service to set up all the specific monitoring processes for
controlling services and resources. To this end, in our

Figure 1. ICARO Smart Cloud Architecture

installations, the KB Services specifically use drivers to
manage multiple Nagios instances (not discussed in this
article). This approach has a couple of advantages. Firstly,
it simplifies the work on the Orchestrator since all the
monitoring issues do not have to be programmed into the
deploy workflow, also reducing that error prone process (but
do not prevent to do then in any case). Secondly, it allows to
be sure that the SCE may automatically add all monitoring
issues that permit at the SCE to have all needed information
for controlling the business configuration behavior related
to SLA, reshaping strategies, and of all resources involved.
Moreover, the SLA are typically based on high level metrics
and applicative metrics, such as: the number of time the
workload exceeded a threshold for 20 minutes, the number
of users registered per day, the number of contemporary
streaming processes, etc. Once the monitoring is activated
the useful collected data are received and accumulated in
the KB. Other detailed data may be left accumulating and
stored into the monitoring tools and services. In order to
fastening the alignment of the Smart Cloud solution with
a VMware based infrastructure already in place, the SCE
also present a process to directly access at the VCenter data
of a VSphere solution. The SCE exploits the cloud model
contained into the KB, thus performing semantic queries
in SPARQL. Queries are performed for estimating firing
conditions strategies (reconf, scaling, cloning, migration,
etc.), verification and validation processes, estimation of
high level metrics, and thus for controlling healthiness of
each cloud resource, SLA and business processes. Thus,
thousands and thousands of query processes are executed
per day, on a distributed scheduler of the SCE. These Smart
Cloud processes are put in execution on a distributed and
parallel architecture comprised of a set nodes (on virtual
machines and a distributed scheduler), thus obtaining a
scalable and fault tolerant solution for smart cloud. To this
end, the SCE tool presents a suitable user interface for: SCE
process definition and management, SLA monitoring and
assessment, value trend assessment, SCE strategies setup,



etc. Moreover, for facilitating the formalization of semantics
queries a suitable graphical user interface based on Linked
Open Graph to access at the KB and browsing the semantic
model has been used [8]. As a general consideration, the
proposed solution for Smart Cloud can be easily integrated
with any CCM, and/or cloud Orchestrators, and Monitoring
tools since the connection with these tools are performed
by using REST calls and XML/JSON files. The SCE can
be invoked and configured by the CCM as well as directly
by some Orchestrator. In the validation case, it was directly
managed by a higher level CCM addressing different kinds
of orchestrators.

III. KNOWLEDGE BASE

The Knowledge Base (KB) stores the configuration of the
whole cloud service ranging from the data center infras-
tructure to applications structure as well as the applicative
metrics definitions and values. A review on KB usage in the
context of cloud can be recovered on [7]. The KB needs
to store not only the structure of the cloud components (in-
frastructure, applications, configurations) but also the values
of metrics of the components and their temporal trends to
be able to answer question like ”which host machines can
allocate a new VM?” or ”is a host machine over used?
Which VM is using most resources?”. However storing
the full history of all metric values on the KB can be
too expensive and unnecessary. For this reason high level
metrics has been defined in order to aggregate values of low
level metrics (CPU%, memory used, disk available, etc.) to
produce an indicator that is used to represent the resource
load (e.g. average or maximum CPU usage % over last hour).
Considering that only high level metrics values are stored on
the KB while the low level ones are stored in the monitoring
service (e.g., Nagios) and that high level metrics can be
estimated less frequently than low level ones the number
of values stored on the KB is reduced. Another aspect
is related with applications, we need to store in the KB
both the application as a type and the application instances,
and moreover applications can have specific constraints, as
the number of services involved (e.g. number of front-end
web servers) for this reason in order to avoid to duplicate
the type/instance relation (already modeled in RDF) and to
leverage on the modeling features available in OWL2 to
express constraints (e.g. max/min cardinality) we decided to
represent the application model as an OWL Class. Another
need is the possibility to aggregate different applications to
build a complete business configuration (e.g., an ERP with
a CRM) and also to model applications tenants and put
application tenants in business configurations. The KB has to
contain the SLAs associated with application or application
tenants or with a whole business configuration. The SLA has
been modeled as a set of Boolean expression The proposed
KB provides REST services for storing and manipulating:
DataCenter, Application Types, Business Configurations,

Metric Types and Metric Values that are stored on an RDF
Store (currently an OWLIM-SE instance). When the data is
provided to be stored on the KB as RDF-XML, it is firstly
validated and then stored. The KB also provides a SPARQL
endpoint allowing making semantic queries.

A. Smart Cloud Ontology

The information stored in the KB as RDF triples uses
a specific OWL ontology. The ontology developed allows
modeling the different aspects of a cloud service as: infras-
tructure description (e.g., host machines, virtual machines,
networks, network adapters), applications and services de-
scription, business configurations, metrics and SLA and also
monitoring aspects.

1) Infrastructure: The infrastructure is modeled as a Dat-
aCenter with a set of HostMachines or HostMachineCluster
(containing HostMachines). The HostMachines have specific
attributes as the CPU core count, CPU architecture (e.g.
x86), CPU speed, the RAM memory capacity, the network
adapters, the LocalStorages available, the hypervisor used,
etc. The DataCenter can also contain some ExternalStorage
(e.g., NAS) that may be used to store virtual machines, and
Routers and Firewalls that connect Networks. The Host-
Machines contain VirtualMachines that are used to run the
services providing applications to users. VirtualMachines are
characterized by virtual CPU count, RAM memory capacity,
mass storage (different disks) and network adapters that
connect to the network. The following is an example, written
using the Turtle syntax, of a Virtual Machine with 1GB
RAM, 2 CPUs, a 10GB disk that is stored on a disk of
a host machine:

ex:vm1 rdf:type cld:VirtualMachine

cld:hasName "vm 1, windows xp";

cld:hasCPUCount "2";

cld:hasMemorySize "1";

cld:hasVirtualStorage ex:vm1_disk;

cld:hasNetworkAdapter ex:vm1_net1;

cld:hasOS cld:windowsXP_Prof;

cld:isStoredOn ex:host1_disk

cld:isPartOf ex:host1;

ex:vm1_disk rdf:type cld:VirtualStorage;

cld:hasDiskSize 10.

2) Applications and Services: Cloud Applications are
realized using a variety of services (e.g., WebServers, Web
Balancers, Application Servers, DBMS, application caches,
mail servers, network file servers) that are available on
machines over a network. These services may be deployed
in many different ways, from all services on one machine to
one machine for each service. There are some constraints to
be fulfilled, for example some services are optional (e.g.
application caches), some service need a specific feature
(e.g. a web server supporting PHP). As already mentioned,



to model Applications we have to represent both the ap-
plication as a ”type” (the class of Joomla applications)
and applications as instances of a type. The following is
the definition of the CloudApplication class written using
Manchester notation:

CloudApplication = Software

and (hasIdentifier exactly 1 string)

and (hasName exactly 1 string)

and (developedBy some Developer)

and (developedBy only Developer)

and (createdBy exactly 1 Creator)

and (createdBy only Creator)

and (administeredBy only Administrator)

and (needs only

(Service or CloudApplication or

CloudApplicationModule))

and (hasSLA max 1 ServiceLevelAgreement)

and (hasSLA only ServiceLevelAgreement)

and (useVM some VirtualMachine)

and (useVM only VirtualMachine)

An application is defined as a piece of software with
an identifier, a name, developed by some developer, whose
instance was created by one creator and can be adminis-
tered by administrators. Moreover it needs Services, other
CloudApplications or CloudApplicationsModules, it can
have at most one SLA and it uses some virtual machines.
The subclass of applications representing the balanced
Joomla applications are those that need one MySQL server,
one http balancer, one NFS server for storing files and more
than one Apache Web server supporting PHP 5, that is
expressed as the following:

JoomlaBalanced SubClassOf CloudApplication

and (needs exactly 1 MySQLServer)

and (needs exactly 1 HttpBalancer)

and (needs exactly 1 NFSServer)

and (needs min 1

(ApacheWebServer and

(supportsLanguage value php_5)))

3) Metrics and SLA: For the definition and verification
of Service Level Agreements are needed metrics values that
need to be compared with reference values. Two kinds of
metrics are defined: low level metrics whose values are
provided directly from the Supervisor & Monitor sub-system
(e.g. CPU%, memory used, network bandwidth used) that
have point measure at a moment in time; and high level
metrics that combine the values of low level metrics to
provide a measure of a more general characteristics (e.g.
the average CPU usage percentage over the last 30 min.)
The ontology defines both low level metrics and high level
metrics. The high level metric definition can combine the
last value or the average, maximum, minimum, sum of
values over a time interval (seconds, minutes, hours) of low

level metrics using the basic mathematical operators (plus,
subtract, multiply, divide). For example the ratio between
the maximum memory used in the last 10 minutes and
the average memory used in the last 30 minutes can be
defined. Moreover SLAs can be defined and associated
with applications or with business configurations. A SLA
is defined as a set of ServiceLevelObjectives (SLO) that
need to be verified within a certain validity interval. Each
SLO is associated with a logical expression that needs to
be verified, this expression is the AND/OR combination of
checks of values (less than, greater than, equals) of high level
metrics with reference values; the SLO is also associated
with an action that needs to be done when the objective is
not verified.

4) Business configurations: The business configurations
contains the instances of the applications that need to work
together to form a business process (e.g., an ERP application
with a CRM application). Business configurations contain
the application instances, the related service instances (ap-
plication servers, DBMS, file storage, etc.) that are running
on virtual machines. Moreover a business configuration can
also contain simple virtual machines that are not used in an
application and it can also contain host machines that are
fully available for a specific customer.

5) Monitoring: When providing applications, services or
host/virtual machines the information that should be used to
enable monitoring them may be also specified, for example
the monitoring IP address to be used, in case the machine
has multiple IPs. Or the parameters to be used for monitoring
a specific service metric.

B. Validation and Verification

The OWL ontologies has been designed for distributed
knowledge representation and use the Open World Assump-
tion (OWA) meaning that something that is not explicitly
stated it is unknown if it is true or false. While for some
domains the Closed World Assumption (something that
cannot be proved true it is false) fits better. So for example
if it is stated that an application needs at least two web
servers and in the configuration is present only one, an OWL
reasoner will not considered this a contradiction because in
principle we do not know if a second web server exists.
Another aspect is that OWL does not use the Unique
Name Assumption, meaning that two different URI may
identify the same thing. For example if an application must
have exactly one DBMS service and in a configuration the
application is associated with two DBMS identified with two
different URI, a standard OWL reasoner will not identify
an inconsistency, unless it is explicitly stated that the two
URI identify different things. Considering these aspects, for
the validation of the configurations submitted to the KB an
OWL reasoner was not used but some SPARQL queries
are used to check if a configuration is valid, similarly to
[10] where some OWL axioms are transformed to SPARQL



queries to express integrity constraints. So for example a
query to list all the virtual machines in a configuration (each
configuration is stored in a different graph) with not valid
operative system is:

select ?vm ?os where {

graph <> {

?vm a cld:VirtualMachine;

cld:hasOS ?os.

}

filter not exists {

?os a cld:OperativeSystem.

}

}

However in this case a problem arises when the range of
the cld:hasOS property is declared an cld:OperativeSystem
and this fact is stored in the RDF store (with reasoning
enabled). In this case when the configuration with a wrong
reference to the operative system is stored the rule based
reasoner infers that this wrong OS identifier is an OS and
the query will not identify the problem. For this reason the
range declaration should not be present in the ontology.
Using SPARQL queries also max/min cardinality can be
checked. Since in the KB are also present the values of
high level metrics (e.g., average CPU% in the last 30 min,
used memory) the validation query may check if the host
machine have space for the new virtual machine. A query
may be also used to find the hosts where to allocate a virtual
machine.

C. Linked Open Graph Service

The Linked Open Graph (LOG) is a tool that allows
to visually navigating SPARQL endpoints and linked data
services. LOG allows exploring the graph starting from a
specific URI [?] and nodes can be progressively explored
adding more details. The service allows to be embedded
in other pages using html iframe. This service is used to
explore the SPARQL endpoint of the KB. In Fig. 2 an
example showing the structure of the DISIT datacenter is
shown embedded in a page of the Smart Cloud Engine. This
service is publicly available at http://log.disit.org.

IV. SMART CLOUD ENGINE

In a typical cloud scenario a central engine for task
scheduling is a major requirement. Common tasks such as
virtual machine reconfiguration, move or cloning, memory
or disk increasing, applying load balancing or fault toler-
ance best practices, require a scheduling mechanism that
periodically checks the status of the system and, based on
some reasoning, take consequent actions. The aim is to
develop efficient algorithms for task scheduling in a cloud
environment ([11], [12], [13]). The Smart Cloud Engine
(SCE) is a core component of Icaro that periodically checks
the status of the resources in the cloud infrastructure (e.g.,

Figure 2. Linked Open Graph showing the DISIT datacenter

virtual machines and application services), connects to the
Knowledge Base through the use of SPARQL queries, and
invokes appropriate REST calls toward the Configuration
Manager (CM), as defined in the Service Level Agreement
related to the specific cloud service of interest (e.g., scaling,
balancing, reconfiguration). SCE is an autonomous engine
for the supervised exploitation of cloud resources, for the
automation and optimization of services. SCE periodically
checks for metrics and services status at IaaS, PaaS, SaaS
levels of the cloud stack, and knows the current general
configuration of the system and the status of the cloud;
it knows the general and specific rules of production and
scaling, and it works on event based logic that allows
taking decisions, and dynamically balancing resources. SCE
implements rules that define automatic policies for the
management of emergencies and events, to exploit resources
distributed on various datacenters (e.g., to increase the
current computational capacity of a system or for an au-
tomatic data migration). In the complex distributed cloud
scenario of Icaro there is the need of distributed instances
of running agents that perform cooperative tasks, and run
in an integrated environment, with mechanisms for the load
balancing of the various scheduled tasks. For this purpose,
SCE features a multiplatform scheduling engine with cluster
functionality that allows adding new scheduling nodes and
defining jobs, for smart cloud management, without service
downtime. Each job has a name and a reference group, a
fire instance id, a repeat count, a start and an end time, a
job data map, a job status (i.e., fired, running, completed,
success, failed), and one of more associated triggers with
their relevant data (i.e., name and group, the period and
priority of execution). A job can be edited, deleted, stopped,
paused, resumed, and manually triggered from the user
interface or by direct REST calls to the scheduler service
(the same applies to triggers). Each schedulers node can run
a job with a lock mechanism, thus modifying the status of
the corresponding trigger.

A waiting trigger is waiting for its fire time, and to be
acquired by a schedulers node; a paused trigger cannot put
a job in execution; an acquired trigger has been selected by



Figure 3. Metric graphs of a Service Level Agreement

a node to be fired (once completed it can be rescheduled or
deleted, if the job must be executed a finite number of times);
a blocked trigger is prevented to be executed, because it is
related to a job that is already executing. In order to keep
running unresponsive jobs (e.g., jobs querying not available
services) a timeout can be defined as well.

Similarly, the scheduler can be started, stopped and
paused, and all of its associated jobs can be globally paused
or resumed with a call to any of the schedulers node,
or through the web interface. In clustering mode, a job
can be marked to request recovery, thus allowing job fail-
over; in this way, during the shutdown of the scheduler
(i.e. a process crashes, or the machine is shut off), the
job is re-executed when the scheduler starts again. Another
major requirement that has been faced off is related to the
concurrency of scheduled tasks. In a cloud environment, the
rapid dynamic changes involving the parameters related to
the various services require to define policies to maintain
the coherency of data. At this regard, it is important to
specify the concurrency level of the scheduled tasks. For
this purpose, SCE supports both concurrent a non-concurrent
schemes for jobs, where non-concurrent jobs avoid multiple
executions of the same job at the same time (i.e., the job
is disallowed to execute concurrently, and new triggers that
occur before the completion of the running job are delayed).
SCE allows a direct monitoring of each job activity with a
push interface, reporting the current status of the job, and
the number of successes or failures in the last day or week,
with relative percentages. Furthermore, the variety of the
hardware at disposal and the jobs to be scheduled require
best practices for adaptive job scheduling. For example, a
reconfiguration process written for a particular CPU archi-
tecture should be bounded to run on a certain set of scheduler
nodes only; nodes with high CPU load could reject the
execution of further tasks, until their computation capacity
is fully restored at acceptable levels; more in general, there
could be the need to assign certain selected tasks only
to nodes with a certain level of processing capacity. It
is also of fundamental importance to be able to define

mechanisms that allow scheduling tasks in a recursive way,
based on the results obtained in previous tasks. For example,
a reconfiguration strategy consisting of various steps could
require taking different actions on the basis of dynamical
parameters evaluated at runtime. At this regard, SCE allows
adaptive job execution (e.g., based on the physical or the
logical status of the host), and conditional job execution,
supporting both system and REST calls. The user can build
an arbitrary number of job conditions that must be satisfied
in order to trigger a new job or a set of jobs, or can even
specify multiple email recipients to be notified in case of a
particular jobs result. By combining an arbitrary number of
conditions, it is possible to define complex flow chart job
execution schemes, for the management of different cloud
scenarios. A trigger associated to a conditional job execution
is created at runtime and it is deleted upon completion. It is
possible to define physical or virtual constraints (e.g., CPU
type, number of CPU cores, operating system name and
version, system load average, committed virtual memory,
total and free physical memory, free swap space, CPU load,
IP address), that bind a job to a particular schedulers node.
SCE supports both the execution of applications binary and
Linux shell scripts, allowing specifying a custom number of
parameters. Smart cloud best policies require services and
tools to collect and analyze huge amount of data coming
from different sources at periodic intervals. Virtual machines
typically consist of hundreds of services and related metrics
to be checked. SLAs often define bounds related to services
or groups of services that consist of many applications,
configurations, processing capacity or resources utilization.
It is worth noting that collecting such a high number of
data could lead to unmanageable systems, even if adopting
the best practices of DMBS management or clustering, in a
short period of time. For this purpose, SCE includes support
for NoSQL, with the aim of allowing high performance in
data retrieving and processing. SCE includes event reporting
and logging services, for a direct monitoring of the smart
cloud infrastructure and the activity status of every cluster
node, and notifications about the critical status of a system
or service (e.g., sending of emails). Notifications can be
conditioned or not to the results of execution. SCE includes
a status view of the currently running jobs (i.e., jobs status,
previous and next fire time, job data map, jobs result or
thrown exceptions, IP of the schedulers node that executed
or is running the job), a history log of the schedulers
activity, and a history log of the schedulers nodes status.
Direct monitoring of the above view is also at disposal,
and the reporting period of each schedulers node can be
adjusted. SCE provides a web interface that gives a view of
the infrastructural status of the cloud platform (i.e., hosts,
virtual machines, applications, metrics, alerts and network
interfaces), with relevant details about the status of the
SLAs (i.e., violations occurred and checks performed at a
particular time), and a summary view of the global status



Figure 4. Elastic Metrics Editor

of the scheduling nodes in the cluster. Graphing facilities
are at disposal of the user to perform more deep analysis
on the collected data (see Figure XI). In order to check
the coherence of a monitored service with respect to its
SLA, SCE periodically forwards requests to the Knowledge
Base (i.e., SPARQL queries), including the identification of
the SLA. Once evaluated the system status of interest (i.e.,
registered values of all the metrics included in the SLA, with
respect to their thresholds, evaluated at the specified time),
SCE eventually instructs the CM to take reconfiguration
actions (e.g., increment of storage, computational resources
or bandwidth), by sending a REST call to a defined endpoint,
as specified in the SLA. SCE logs every event related
to incoherent status of the monitored services. Checking
periods can be adjusted for each service. SCE includes a
recovery system that allows defining policies to apply in
case of misfired jobs (e.g., reschedule an existing job with
existing or remaining job count), and allows graphing of
monitored metrics, with customizable time intervals. For
example, the scheduler could be instructed to fire a job
as soon as it can, after a misfire event has occurred. For
each metric it reports the total amount of times when the
metric was found to be out of the requested bounds and the
total number of checks performed. Metrics can be seen and
graphed grouped per SLA or not. Single metrics provide the
list of SLA violations occurred for them in the selected time
period is shown with relevant data (e.g., the time at which
the violation occurred, the name of the metric, the registered
value, the threshold, and the related business configuration,
virtual machine and SLA). SCE reports a global view of
the cluster status, with detailed views of each schedulers
node (e.g., last job execution time, number of jobs processed
since the last restart, CPU load and utilization, time of
last check, free physical memory, currently executing jobs,
free disk space, operating system), and the total consumed
computational capacity of the cluster (i.e., total CPU uti-
lization, total capacity in terms of GHz and percentage of
consumed capacity, total and free memory, number of CPU

cores, total number of jobs executed by the cluster and total
number of jobs executed on average per hour, number of
jobs executed and relative percentages in the last day and
in the last week, with respect to successfully completed and
failed jobs). Concerning the best practices of elastic cloud
computing, another requirement consists in allowing smart
policies for resource scaling and reconfiguration, based on
parameters not necessarily included in the Service Level
Agreement. For example, it could be required to partition
the resources in a certain manner for administrative purposes
(e.g., costs optimization, server maintenance or migration,
uniform distribution of resources across the various data-
centers) or to keep a certain quality level or in the optical of
green cloud. At this regard, SCE integrates a module for the
definition of elastic cloud policies, thus allowing defining
custom Boolean expressions on metrics, virtual machines
and business configurations (see Figure XII). Thus, it is
possible to define complex periodic queries to be performed
on the historical collected data, to verify the status of
applications and services and to set custom alert limits,
related or not to the correspondent SLAs. These periodic
tasks can forward REST calls to a specified endpoint, to
perform scaling and reconfiguration task on the system or
service of interest.

V. EXPERIMENTS AND VALIDATION

The knowledge based driven solution described above
was deployed on the Icaro cloud infrastructure for test and
validation purposes. At this regard, 16 SLA and 17 business
configurations were defined, with the aim of controlling
the status of 66 virtual machines (consisting of 15 metrics)
deployed on 12 physical host machines.

The most complex SLA has 75 conditions for an applica-
tion (www.eclap.eu) using 13 VMs and running 12 services
(1 HTTP balancer, 3 Web Servers, 1 Apache Tomcat, 1
MySQL, 1 AXCP Scheduler, 5 AXCP Grid Nodes). With
an history of service metric values of about 3 months (with
about 3800 measures per metric), the time needed to evaluate
a SPARQL query to evaluate the SLA and to get the current



Table I
METRIC ALARMS RECORDED ON ICARO (22/12/2014-19/02/2015)

Service
Metric

Alarms
(relative
approx.

%

%
(approx.)

Total Events

Memory Used AVG 30 min 88348 (73.76%) 11.86% 119763
Disk Usage AVG 30 min 63825 (54.03%) 8.57% 118127
Network Traffic AVG 30 min 28723 (24.29%) 3.85% 118226
Last MySQL DB Size 15853 (59.55%) 2.12% 26620
CPU AVG 30 min 86 (0.07%) 0.01% 107887
Last Check Apache HTTP 66 (0.1%) 0.008% 35365
Last MySQL Connections 33 (0.1%) 0.004% 25506
Last Check Tomcat HTTP 24 (0.08%) 0.003% 29089
Last Apache # process 0 (0%) 0% 35207
Last MySQL # process 0 (0%) 0% 26472
Last Apache Tomcat # process 0 (0%) 0% 25006
Last Axcp Grid Node Check Alive 0 (0%) 0% 24043
Last Axcp Grid Node # process 0 (0%) 0% 23752
Last Axcp # process 0 (0%) 0% 15986
Last Axcp Check Alive 0 (0%) 0% 13644
Total 196958 - 744693

Table II
SCHEDULER’S NODE METRICS RECORDED ON ICARO

(22/12/2014-19/02/2015)

Node Metric Average Value
CPU load (JVM) 0.007%

System Load Average 0.5%
Committed Virtual Memory 5.25 GB

Free Swap Space 3.87 GB
Free Physical Memory 2.55 GB

CPU Load Average 0.37%
Free Disk Space 11.43 GB

values for the metrics involved is of about 30 s, while for a
SLA on a single VM with four conditions (with bounds on
CPU usage percentage, memory, disk storage and network
metrics) it takes about 2.0 s. At this date, 744693 different
events were recorded, 196958 of them of alarm type (about
26.44%), as reported in Table V. The column alarm reports
the number of alarms for each metric, with the relative
percentage, with respect to the total number of metric events.

Data were recorded with an interval of 30 minutes. From
the above figures, it is evident that the vast majority of
alarms recorded were related to memory (11.86%), disk
usage (8.57%), network traffic (3.85%), and database size
(2.12%). The schedulers cluster consisted of two nodes and
a shared MySQL database. The status of each node was
recorded and a total number of 228630 events were collected
(see Table V). For each reported alarm, a REST call was
issued to a test service that recorded the data of the event.

VI. CONCLUSION

The conclusion goes here. this is more of the conclusion

ACKNOWLEDGMENT

The authors want to thank all the partners involved in
Icaro, and the Regione Toscana for funding the project. Icaro
has been funded in the POR CReO 2007 2013.

REFERENCES

[1] Xiong, Pengcheng, et al. ”Intelligent management of virtual-
ized resources for database systems in cloud environment.”
Data Engineering (ICDE), 2011 IEEE 27th International Con-
ference on. IEEE, 2011.

[2] D. Androcec, N. Vrcek, J. Seva, ”Cloud Computing Ontolo-
gies: A Systematic Review”, Proc. of MOPAS 2012, The
Third International Conference on Models and Ontology-based
Design of Protocols, Architectures and Services, Chamonix,
France, April 29, 2012.

[3] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Towards
a unified ontology of cloud computing. In Grid Computing
Environments Workshop, 2008. GCE 08, pages 110, Nov 2008.

[4] Moscato, F.; Aversa, R.; Di Martino, B.; Fortis, T.; Munteanu,
V., ”An analysis of mOSAIC ontology for Cloud resources
annotation”, Federated Conference on Computer Science and
Information Systems (FedCSIS), vol., no., pp.973,980, 18-21
Sept. 2011.

[5] Wu, L., Buyya, R.: Service Level Agreement (SLA) in utility
computing systems. In: Cardellini, V., et al. (eds) Performance
and Dependability in Service Computing: Concepts, Tech-
niques and Research Directions. IGI Global, USA (2011)

[6] Antonio Cuomo, Giuseppe Di Modica, Salvatore Distefano,
Antonio Puliafito, Massimiliano Rak, Orazio Tomarchio, Sal-
vatore Venticinque, Umberto Villano, An SLA-based Broker
for Cloud Infrastructures, Journal of Grid Computing, March
2013, Volume 11, Issue 1, pp 1-25, 20 Oct 2012.

[7] P. Bellini, D. Cenni, P. Nesi, ”Cloud Knowledge Modeling and
Management”, Chapter on Encyclopedia on Cloud Computing,
Wiley Press, 2015.

[8] P. Bellini, P. Nesi, A. Venturi, ”Linked Open Graph: browsing
multiple SPARQL entry points to build your own LOD views”,
International Journal of Visual Language and Computing,
Elsevier, 2014.

[9] Jonathan Stuart Ward, Adam Barker, ”Observing the clouds: a
survey and taxonomy of cloud monitoring”, Journal of Cloud
Computing 2014, 3:24 doi:10.1186/s13677-014-0024-2.

[10] Sirin, E. & Tao, J., 2009. Towards Integrity Constraints in
OWL. In Proceedings of the 5th International Workshop on
OWL: Experiences and Directions (OWLED 2009), Chantilly,
VA, United States, October 23-24, 2009. CEUR-WS.org.

[11] S. Sindhu, Saswati Mukherjee, ”Efficient Task Scheduling
Algorithms for Cloud Computing Environment”, High Perfor-
mance Architecture and Grid Computing Communications in
Computer and Information Science Volume 169, 2011, pp 79-
83.

[12] L. Ma, Y. Lu, F. Zhang, S. Sun, ”Dynamic Task Scheduling
in Cloud Computing Based on Greedy Strategy”, Communi-
cations in Computer and Information Science Vol 320, 2013,
pp 156-162 .

[13] J. Tsaia, J. Fanga, J. Chou, Optimized task scheduling and
resource allocation on cloud computing environment using
improved differential evolution algorithm, Elsevier, Computers
& Operations Research, Vol 40, Issue 12, 2013, pp 30453055


