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Abstract— Controlling and regulating people flows
and the access to the city services are major topics in
the context of Smart City management. Flow
surveillance provides valuable information about city
conditions, useful for not only monitoring and
controlling the environmental conditions, but to
optimize the exploitation of various city services. In
this context, it is mandatory to develop tools for
assessing people flow. This paper presents a
methodology for an effective placement of counter
sensors, to model flows with a statistically significant
precision rate. Comparative analyses are conducted
with respect to real data (i.e., cab traces) of the city
of San Francisco. Several different placing
methodologies of Wi-Fi access points have been
tested and compared, to minimize the cost of AP
installation. The research work described in this
paper has been conducted in the scope of the EC
Horizon 2020 funded project Resolute
(http://www.resolute-eu.org ) and for Sii-Mobility.
Keywords: people flows; smart city; WiFi Access Point
location

I. Introduction
The optimization of services for the citizens is one of
the most challenging activities of the Smart Cities.
City services can be related to mobility, government,
energy, cultural events, commercial, environment,
etc. Among the services, mobility is a commodity;
thus, transportation and mobility analyses are
valuable aspects always considered for an effective
definition of Smart City. According to [Giffinger et al. ,
2007], Smart Mobility is among the key factors of a
modern Smart City, including local and international
accessibility, availability of ICT infrastructures,
sustainable, innovative and safe transport systems.
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[Caragliu et al.,, 2009] include traditional transport
communication infrastructures among the essential
requirements for Smart Cities.

In the context of mobility, traffic/flow analysis is a
major prerequisite for planning traffic routing. Thus,
it is a central part of the so called Intelligent
Transportation Systems (ITS) for managing public
transportation. Traffic flow analysis is commonly used
to ease the transportation management, for
regulating the access control to the cities, for Smart
Parking, for traffic surveillance providing information
about road conditions and travel, or for monitoring
and controlling the environmental conditions, such as
harmful emissions (e.g., CO2, PM10, ozone). The
European Commission indicates, among the main
topics that should be considered with special
attention in the framework of the CARS 2020 process,
the implementation and promotions of ITS, including
Smart Mobility [CARS 2020]. Some of the techniques
adopted for traffic monitoring and management can
be declined for people flow analysis and support in
the city. It is very important to know the movement
of people within a certain precision, and detecting
where and how people are crossing the city and using
its services by using different kind of moving
solutions: car, bike, walking, taxi, car sharing, buses,
tram, etc., targeting services into the city [Bellini at al.,
2014]. Typically, the telecom operators are not
capable to provide this kind of information. They
know the number of people connected to each
cellular cell at a given time slot during the day, and
not how people move in city.

At this regard, specific tracking services for mobile
phone IDs are needed and, when applied, the citizens
have to be informed via an informed consent (e.g.,



terms of wuse, policy privacy). In order to
measure/derive the typical people flow, the
estimation of the so called OD matrix (Origin
Destination Matrix) could be needed. The OD matrix
presents on both axes the city zones, while the single
element may contain the number of people (or the
probability) of passing from the zone of origin and
reaching the zone of destination, in the day or in a
given time window. The OD matrix estimation via
observations is very relevant for traffic flow
prediction and management, in particular for (i)
planning optimized routes predicting shortest and
viable paths, (ii) providing info-traffic services on
desktop or mobile devices, via the so called Advanced
Traffic Management Systems (ATMS).

Most of the OD matrixes can be time dependent, and
thus their dynamic real-time estimation may be
needed, or at least the estimation of their values
along the day and week, (e.g., typical sampling period
is every 15 minutes). Moreover, real-time OD
matrixes can be continuously estimated during the
day or in a temporal window. On the other hand, OD
matrixes can be sensitive to traffic conditions. Their
values are of primary interest if they represent the
maximum or at least sustainable values, disregarding
values when the traffic system cannot sustain the
traffic. Thus, pre-calculated OD matrixes can be used
as default descriptors of the traffic conditions for plan
estimation.

These solutions are called Advanced Traveller
Information Systems (ATIS). In practice, we would like
to measure the typical people flows from the several
zones of the city. In the context of traffic flow, some
methods make use of parametric estimation
techniques (e.g., Maximum Likelihood, Generalized
Least Squares, Bayesian inference). ML methods
minimize the likelihood of observing the OD matrix
and the traffic counts. Other methods based on traffic
count include Combined Distribution and Assignment
(CDA) [Cascetta et al., 2001], Bi-level Programming
[Doblas et al.,, 2005], [Kim et al.,, 2001], Heuristic
Bi-level Programming [Lundgren et al., 2008], Path Flow
Estimation (PFE) [Nie et al., 2005], or Neural Networks
[Gong, 1998]. For example, [Ashok and Ben-Akiva,
2000] used a Kalman filtering technique to update the
OD matrix. Time dependent offline estimation deals
with time-series of traffic counts. Typically, building
an OD matrix for mobility requires installing devices
to count the single vehicle in the traffic (and
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eventually record the speed of each vehicle) on the
road. A traffic counter is a device that records
vehicular data (i.e., speed, type or weight). At this
regard, the US Federal Highway Administration
defines three main traffic counting methods: human
observation (manual), portable traffic recording
devices and permanent automatic traffic recorders
(ATR). Thus, at level of traffic flow observation several

different techniques are used: video cameras,
pneumatic road tubes, piezo-electric sensors
embedded in the roadway as inductive loop
detectors, magnetic sensors and detectors,

microwave radar sensors, Doppler, passive infrared
sensors, passive acoustic array sensors, ultrasonic
sensors, laser radar sensors. Most of these sensors
use intrusive technologies and require pavement cut;
in some cases lane closure is required, the devices are
sensitive to environmental conditions and require an
expensive periodic maintenance.
Some of the above mentioned techniques can be
used to produce vehicle classification (e.g., rural cars,
business day trucks, through trucks, urban cars).
Recently, other techniques have been adopted as
RFID, Bluetooth, Real Time Location System (RTLS)
and Wi-Fi access points [Danalet et al., 2012], [Patil et
al., 2015]. In some cases, the position of vehicle can be
monitored from the GPS position of mobile devices
installed on the vehicle, or simply by using
smartphone navigators (e.g., Google Maps, TomTom,
Waze), thus providing crowd sources positions and
velocity of the vehicles. In these two cases, the track
of position is agreed with the users that install the
device or run the mobile application on the
smartphone or navigator. RFID is quite unsuitable to
detect devices because of the small range of action.
Bluetooth can be more suitable but expensive, since
specific station to collect the passage is needed. Wi-Fi
access points are less reliable in detecting the
presence of motorized sources with respect to
physical devices, and GPS methods.
We decided to use Wi-Fi Access Points as counter
devices: given the high distribution of mobile devices
and the low cost of a Wi-Fi AP, and the fact that a
large number of APs is already installed in the city.
This solution is quite cheap and easy to implement,
also considering that many municipalities offer free
Wi-Fi connectivity, and the needed coverage can be
easily obtained. Therefore, the identification of the
best placement of Wi-Fi Access Points, as detectors
2



for measuring the OD matrix is very important. The
positioning of APs aims at limiting the costs by
obtaining acceptable measures for the OD matrix.
That means to obtain an OD matrix with good
approximations with respect to a massive and
systematic measuring of the whole city flow by
humans and/or specific sensors. This paper presents a
study and methodology for the positioning of Wi-Fi
APs according to the zone adopted for the OD matrix
needed estimation. The proposed study and solution
has been validated by exploiting the data set
introduced in [Piorkowski et al., 2009] which covers cab
mobility traces, collected in May 2008 in San
Francisco.

The proposed approach assesses the present
distribution of Wi-Fi Aps on San Francisco to collect
flows data with mobile device discovering. On the
other hand, the proposed method could be used to
suggest better positioning and/or completing the
positioning of the city Wi-Fi APs distribution to be
used also as sensors, for the OD matrix estimation.
The research work described in this paper has been
conducted for RESOLUTE EC Horizon 2020 project
(http://www.resolute-eu.org).

This paper is structured as follows. In Section II, the
definition of the OD matrix is reported together with
the analysis of data collected in San Francisco. Section
Il presents the proposed approaches for positioning
the APs and their comparison. In Section IV, results
are analysed. Conclusions are drawn in Section V.

Il. Origin Destination Matrix and Reference Data
According to the introduction, the main goal of the
presented research has been to identify and validate
a method and tool for the positioning of Wi-Fi APs,
with the aim of using them as sensors/observers for
estimating the OD matrix. In this context, the OD
matrix representing flows among the zones of the
city, considered as zip codes z is defined as

Z11 " Zin
ODn,n= ( : R : > (1)
Zn1 " Znn

where z;; represents the total number of traffic
counts from z to z (i.e., how many cabs moved from
z; to z)) defined as
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2= Nrerne(i,)) (2)

and T is the set of unique cab traces, ni, j) is the
number of traffic counts from z; to z; for trace t.

The validation of any AP positioning in the city for the
people count (or traffic flow) is not a trivial task. In
principle, one should be capable to install the APs in
the city in certain positions and demonstrate, by
measuring on the real context, that their position and
data collected is strongly correlated with the effective
number of people and thus of flows among the
different areas of the city. This approach is very
expensive and unfeasible for a number of
configurations. Therefore, we adopted an indirect
method described as follows.

The data set introduced in [Piorkowski et al., 2009]
includes the trace flows of cabs in the area of San
Francisco, collected in May 2008. The dataset reports
all the cab traces in that area, providing fine GPS
positioning of them. In Figure 1, the trace flows are
reported on the city map (for a particular day in the
time range 8:00 am - 9:00 am). The data set consists
of 446,079 traces based on about 11.2 millions of
single GPS points collected by cab movement, not
only in the downtown of San Francisco, but spanning
on the whole city neighbourhoods. On the other
hand, the areas at higher density are those in the
downtown, coherently with what one could have
from the movements of pedestrians in the city. This
area can be identified with about 13 central zip code
areas.

1 s |
Figure 1. Trace flows in San Francisco on a working
day of May, 8:00 AM - 9:00 AM

In order to perform an effective data analysis and
visualization, some web tools for viewing and
comparing flows in different scenarios were
developed. At this regard, OD matrix and thus flows
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among zip areas are represented with a chord
diagram to put in evidence single and aggregate
contributions to the total flow count among the
various city zones (in Figure 2, the chord diagram is
reported for the central part of the city with 13 zip
code areas). An interactive version of this tool is
accessible at http://www.disit.org/6694.

On the user interface, the user can select a time
interval on the day to visualize its related chord
diagram, which is constituted by circular sectors, each
of them representing a city area; passing the mouse
over a sector provides additional information about
the traffic counts originated from it towards other zip
areas. In this manner, it is possible to depict in a
compact and intuitive way the traffic flows among the
various zones. Moreover, for San Francisco we know
the structure of the city and the position of the APs in
the downtown (see Figure 3). The positions have
been taken from OpenWiSpots,
http://www.openwispots.com , with GPS positioning.
They consist of 494 Wi-Fi Aps offered by city services,
from a total of 983 APs, (e.g., coffee shops, hotels,
restaurants, libraries, bars, bookstores, grocery
stores). Therefore, we supposed to use the Wi-Fi
network of San Francisco to estimate the passage in
the city by the mobile phones according to their MAC
address.

Figure 2. San Francisco OD matrix as chord among the
13 central ZIP areas of the city (real cab flows)
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Figure 3. Distribution of real Wi-Fi APs in San
Francisco

This solution can be implemented by collecting the
first discovery by mobile of the Wi-Fi AP that can
stream them as log data to a central server that also
anonymizes the MAC. In alternative, some of the APs
or aggregators of APs may compute the
anonymization algorithm, based on a hash code of
the identifiers. Once detected the passages of flow on
the APs, the OD matrix can be computed. As a first
approximation, we assumed to have the possibility of
detecting the flows by using the present APs, by
capturing the real traces passing within a distance of
25 meters from the AP position. The proposed
approach is a sort of partial simulation based on real
data about traffic flow, that is more realistic than
producing fully simulated data. It is obvious that the
real data captured by the APs would be probably only
a part of the real traffic of people passing close to
them. On the other hand, it is reasonable to have the
simulated measures performed as strongly correlated
to the real effective numbers.

As a general consideration, only 1,470,091 points
were found to intersect with the real APs positions,
which downtown are 1,418,207 with respect to 494
APs. Therefore, in this manner, we assessed the
available distribution of Wi-Fi APs in San Francisco, in
order to collect people flows data with their mobile
device. Once obtained the observations by
intersection of traces with respect to the APs areas,
an estimated OD matrix on the basis of the APs has
been obtained as reported by the chord diagram in
Figure 4a. In Figure 4b, the matrix of difference from
the OD matrix of Figure 2 and that of Figure 4a is
reported, the differences from back abnd forward are
not perceivable.



Figure 4. (a) Chord diagram of flow counts with real
Wi-Fi APs in the city centre; (b) Difference matrix
among OD matrices of real flows and estimated with
real Wi-Fi APs in the city centre

The difference matrix compares the real trafc flow
data with respect to the flow that would be estimated
by using the present APs distribution in the city. The
difference values are reported with a grayscale (the
higher the difference, the higher the darkness of the
matrix element). The two distributions of
Origin-Destination are uncorrelated (a correlation of
0.12 has been measured, see Table I). This result
demonstrates the unsuitability of the present
distribution of the APs for collecting flows. On the
other hand, their positioning was not performed with
the aim of measuring and observing the flows.
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Ill. Adopting AP Positioning Models

A different positioning of the APs in the zip areas
could create better correlation and thus better
precision for the estimation of flows in the city. To
this purpose, a number of different methods for AP
positioning and thus for flow observations have been
adopted and tested, taking them from the literature
of the classical traffic flow observations strategies by
humans. We started by creating a uniformly
distribution grid of APs, placed at the middle of each
street. In all cases, each AP was considered as a
circular buffer with 50 m of diameter. The resulting
AP set, consisting of 14,959 APs (a number of devices
that is surely too high to be affordable), was further
reduced using different strategies as reported in the
following. Moreover, the reduction is also reasonable
since a uniform distribution in all the zones of the city
is not feasible. There are many zones in which the
flows are very low, at least in the simulation data
taken into account. On the other hand, the
positioning of the APs in low flow areas is not
efficient.
Also, a flow prediction strategy should be able to tell
where to place traffic sensors, and how many sensors
to use, providing a tuning strategy for selecting the
required set of sensors, with the aim to minimize the
number of traffic sensors and the costs of periodic
maintenance of the monitoring infrastructure. In this
section, we provide some alternative strategies of AP
placement. The possible cases for distribution are the
following.

a) Random APs: identification of the streets with the
highest trace flow rate (those that have at least
30,000 traces) and then randomly selecting 400
APs from the AP grid described above (see Figure
6a for the OD matrix). This set of APs is a subset
of the set selected in case (b).

b) High Traffic APs: identification of the streets with
the highest trace flow rate (those that have at
least 3000 traces) and then selecting all the APs
intersecting those traces, thus resulting in 804
APs (see Figure 6b for the OD matrix).

c) High Traffic APs (zip boundaries): identification of
the streets with the highest trace flow rate (those
that have at least 3000 traces) and then starting
from the 804 APs of case (b) and considering only
those within 300 m of the zip boundaries, thus
resulting in 448 APs (see Figure 6¢ for the OD
matrix). This set of APs is a subset of the set
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Model Coefficient Std. Error | t-statistic | p-value | Correlation | # APs

Real APs 8 280393.858  19874.972 14.108 0.00C 0.446 983
a 9.448 0.543 17.400 0.000

Real APs (cc) 6 1598664.580 116546.825 13.717 0.000 0.12 494
o4 1.714 1.141 1.502 0.135

(a) Random APs (cc) 6 690144.338 75267.849 9.169 0.000 0.835 400
o 52.921 2.813) 18.816 0.00C

(b) High Traffic APs (cc) 8 684144.945  52950.289 12.921 0.00C 0.915 804
o 10.942 0.389 28.114 0.00C

(c) High Traffic APs (bn, cc) 6 1101641.803 86354.599 12.757 0.000 0.687 448
o4 13.586 1.159 11.727 0.000

(d) High Traffic APs 400 (cc) 8 810743.094 70801.471 11.451 0.00C 0.835 400
o4 24.429 1.297] 18.829 0.000

(e) High Traffic APs (bn, cc) 8 748987.390 58260.615 12.856 0.00C 0.892 400
o4 39.960 1.634] 24.453 0.000

Table | -- COEFFICIENTS — REAL APS, CC = CITY CENTER, BN = ZIP BOUNDARIES (WITHIN 300 METERS)

selected in case (b).

d) High Traffic APs (top 400): identification of the
streets with the highest trace flow rate (those
that have at least 3000 traces) and then starting
from the 804 APs of case (b) and considering only
the top 400 APs (see Figure 6¢ for the OD matrix).
This set of APs is a subset of the set selected in
Case b.

e) Real augmented with selected High traffic APs:
the real distribution of the AP in San Francisco’s
downtown was integrated with the top 300 AP
from case (d) with the highest traffic rate. This set
was then cleaned up by removing those APs that
were found to be at a distance less or equal than
50 m from the real APs, and removing also
intersecting APs, thus resulting in 400 APs (221
real APs, 179 selected high traffic APs).

The resulting OD matrix for these distributions of APs
has been estimated by computing the intersections
between the real cab measures with the placed APs,
according to a capturing range of 25 m radius. The OD
matrix for this configuration was generated by
evaluating the traffic counts among the various APs,
grouped by the zip code they belong to. The chord
diagrams of these scenarios are reported in Figure 6.

The interactive versions of the chords diagrams in
which it is possible for each couple of locations to see
the effective flows (in a way and in the other, for a
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given time slot of the day) are accessible on
http://www.disit.org/6694.

IV. Experimental Results Analysis

A comparative analysis of traffic flows was
conducted, using the above cited set of cab traces,
consisting of 11,219,955 unique detections from 536
cabs, with respect to the above described scenarios.
With the above assumptions the real set of APs
placed in the city centre was used to sample the
original data set, by calculating the APs intersections
with the cab traces. The OD matrix was calculated
from the sampled data set (considering each city zip
code as a separate area), reporting the traffic counts
among every city area.

This procedure was repeated by choosing the APs
with a pseudo random technique, and by placing the
APs only in the roads with the biggest amount of
traffic. After that, a comparative statistical analysis
was conducted for each configuration (see Table I).
The traffic flow outcome is predicted with a linear
regression, finding the parameters that best fit the
data in the linear model

y=ax+p (3)

where x is the dependent variable or predictor (i.e.,
traffic counts as registered by the sensors), and vy is
the outcome (i.e., predicted traffic counts). Building
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(d)

(e)

Figure 6. Chord diagram of flow counts. Cases as described in Table I: (a) Random APs; (b) High traffic APs; (c) High
traffic APs (zip boundaries); (d) High traffic APs (top 400); (e) Real augmented APs

the model in (3) using the set of real APs gives a
correlation of 0.446 (0.120 with real APs in the city
downtown) with respect to the real traces. A number
of cases have been assessed following the placement
strategies described in Section lIl. In case (b), the APs
have been placed on the roads with the highest traffic
rate, producing a model with a correlation of 0.915,
and of 0.835 using only the top 400 APs, as described
in case (d); using random APs of case (a) gives a
correlation of 0.835; using the APs only within 300 m
from the areas’ boundaries, described in case (c),
gives a correlation of 0.687. It is clear from this data
that using the real APs set produces noise and doesn’t
give a reliable model for the traffic counts. Randomly
Distributing the APs gives a better correlation with
the cab traces, while reducing the number of APs and
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considering only those in the proximity of each area,
gives a good correlation while maintaining a limited
number of APs. The set of real APs of case (e),
integrated with some other APs and cleaned up from
some unuseful or redundant elements (i.e., mutually
intersecting APs), gives a correlation of 0.892). To
visualize the results of the various OD models a web
interface was developed, with the possibility to view
the chord diagram for each computed configuration,
for different time intervals of the day. This approach
allowed to identify which are (i) the positions of the
new APs to be added (i.e., 179) and (ii) the minimum
set of APs already in place that have to be used for
data acquisition (i.e., 229). The second point allows
keeping limited the network bandwidth and the
workload for the estimation of the OD matrix.



V. Conclusions

In this paper, we presented a flow analysis using OD
models of traffic counts. Considering public Wi-Fi
access points is not reliable in determining an
effective model for the city traffic flows. Instead,
placement of sensors only in proximity to the
boundaries of high traffic routes yields a statistically
significant linear relationship, between the OD matrix
trip of sampled and real data. Thus, it is possible to
model the traffic behaviour with a limited amount of
traffic counters (in this context Wi-Fi access points)
with an acceptable precision. The proposed
methodology is general and can be applied to
different urban scenarios, in the context of Smart City
traffic management. It makes use of Wi-Fi access
points (AP) distributed across the city of San
Francisco. Comparative analysis has shown an
increased precision of the AP positioning validated by
obtaining an OD matrix and assessing correlation with
the actual OD taken from the original real data by
considering cab flows from high traffic zones,
positioned in proximity of the zones boundaries, with
respect to random uniformly distributed or real APs
(e.g., restaurants, hotels, schools).

The approach allows identifying which are the strictly
needed AP to be added with respect to the AP that
can be already in place in the city, to exploit the
whole infrastructure of Wi-Fi also for people flow
monitoring and assessment.
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