
Benchmarking RDF Stores for Smart City Services

Pierfrancesco Bellini, Paolo Nesi, Gianni Pantaleo

Distributed Systems and Internet Technology Lab, DISIT, http://www.disit.org

Department of Information Engineering, DINFO, University of Florence, Florence, Italy

pierfrancesco.bellini@unifi.it, paolo.nesi@unifi.it , gianni.pantaleo@unifi.it

Abstract— Smart cities are providing advanced services

gathering data from different sources. Cities collect static data

like road graphs, service description as well as dynamic/real time

data like weather forecast, traffic sensors, bus positions, events,

emergency data, etc. RDF stores may be used to integrate all

information coming from different sources and allow

applications to use the data to provide new advanced services to

the citizens and city administrators exploiting inferential

capabilities. These city services are typically based on geographic

positions and need to access quickly to the real time data (e.g.,

next time of bus arrival) as well as to the historical data to

perform some data analysis to compute predictions. In this

paper, the needs and constraints for RDF stores to be used for

smart cities services and the currently available RDF stores are

evaluated. The assessment model allows understanding if they

are suitable as a basis for Smart City modeling and application.

The benchmark proposed has been defined for generic smart city

services to compare results that can be obtained using different

RDF Stores. In the benchmark, particular emphasis is devoted to

geo and full text searches that are partially considered in other

well-known RDF store benchmarks as LUBM and BSBM. The

paper reports the validation of the proposed Smart City RDF

Benchmark (http://www.disit.org/smartcityrdfbenchmark) on the

basis of Florence Smart City accessible as Km4City. The

comparison addressed a number of well-known RDF stores as

Virtuoso, GraphDB and many others.

Keywords— smart city; RDF stores; graph databases; RDF

benchmark; linked data benchmark.

I. INTRODUCTION

Smart cities produce large amount of data having a large
variability, variety, velocity, and size; and thus complexity.
The variety and variability of data can be due to the presence of
several different formats [1] and to the interoperability among
semantics of the single fields and of the several data sets [2].
The data velocity is related to the frequency of data update, and
allows distinguishing static from dynamic data. Static data are
rarely updated, such as once per month/year, as opposed to the
dynamic data which are updated: from once a day up to every
minute to arrive at real time data. The size grows over time
accumulating new data every day and week. The usage of
Resource Description Framework (RDF) stores in the
application domain of Smart City is quite recent, since in most
cases the services are vertically provided. For example the
Intelligent Transport System, ITS, in the city only provides
information regarding the location of buses and their delay,
without addressing the location of services or real time events
in the city, and associated with the bus stops. The integrated
services are typically provided by aggregators that exploit data
integration models. Some city data integrators are well-known

services such as bike and car sharing, navigator system,
tourism information, hotel booking, etc. All these solutions
have the need to integrate geo-located information with real
time data and events continuously arriving from updated
information such as: events, votes, traffic flows, comments,
etc. [4]. For these applications, RDF stores may be a solution
to allow addressing the variability of data, to make reasoning
on space, time, and concepts. On this regard, a comprehensive
smart city data model and ontology can be really effective (see
for example http://smartcity.linkeddata.es/), produced by
Read4SmartCity project http://www.ready4smartcities.eu/ of
the European Commission. One of the most ranked models in
the Read4SmartCity research project is Km4City that is also
used as a reference for the definition of the data of the
proposed benchmark [2].

For the evaluation of RDF stores, some benchmarks were
developed. Some of them are based on real-world datasets
while others provide a program to generate a synthetic dataset.
For example, the LUBM benchmark [3] uses a synthetic
dataset in the university domain; however it covers only the
SPARQL 1.0 specification. Another example is the BSBM
benchmark [5] that generates a synthetic dataset in the e-
commerce domain, and covers the SPARQL 1.1 business
analytics queries. More recently, in the Linked Data
Benchmarks Council project (http://ldbcouncil.org) two
benchmarks were developed both generating a synthetic
dataset, one from the semantic publishing domain (LDBC-SP)
and the other from the social networks domain (LDBC-SN). In
these benchmarks not only query performance but a mix of
insert/update/delete and query operations are considered. It
should be noticed that the current SPARQL specification does
not cover the spatial and keyword searches thus a query
involving these aspects needs to be adapted. The GeoSPARQL
standard [6] was developed by the Open Geospatial
Consortium to overcome this problem, while not many
solutions currently support this specification. Regarding the
benchmark of spatial RDF stores the geographic benchmark [7]
was developed by using both a synthetic generated dataset and
a real dataset. It aims to analyze the support and performance
for advanced spatial relationships among complex spatial
entities (e.g., polygons).

In this paper, the needs and constraints for RDF stores to be
used for smart cities services and the currently available RDF
stores are evaluated. The assessment model allows
understanding if they are suitable as a basis for Smart City
modeling and application. Moreover, a benchmark for linked
data, RDF / Graph data base / stores with a special care to the
real structures and relationships that may be present in smart
city applications is presented. The benchmark proposed has

http://www.disit.org/
mailto:pierfrancesco.bellini@unifi.it
mailto:paolo.nesi@unifi.it
mailto:gianni.pantaleo@unifi.it
http://www.disit.org/smartcityrdfbenchmark
http://smartcity.linkeddata.es/
http://www.ready4smartcities.eu/
http://ldbcouncil.org/

been defined for smart city services to compare results that can
be obtained by using different RDF Stores. In the benchmark,
particular emphasis is devoted to geo and full text searches that
are partially considered in other benchmarks. The research
described in this paper reports the validation of the proposed
Smart City RDF Benchmark on the basis of Florence Smart
City grounded on Km4City ontology and model (web page to
access at the benchmark data and queries
http://www.disit.org/smartcityrdfbenchmark). The comparison
addressed a number of well-known RDF stores as Virtuoso,
GraphDB and many others.

The paper is structured as follows. In Section II, the major
smart city requirements/demands are reported. Section III
presents the general evaluation methodology for assessing and
selecting the RDF stores for smart city applications. In Section
IV, the details on the proposed Smart City RDF Benchmark are
reported. In Section V, the comparison of most relevant state of
the art RDF stores under evaluation is reported on the basis of
the model identified in Section III. Section VI reports the
application of the proposed benchmark in assessing the most
interesting RDF stores (Virtuoso and GraphDB). Conclusions
are drawn in Section VII.

II. SMART CITY REQUIREMENTS FOR RDF STORES

When providing services to citizens of a smart city an
RDF/graph store should have some features that allow
supporting functionalities. RDF stores must support (i) spatial
indexing to allow to quickly provide information near to a
given geographical GPS point, it should also support advanced
geo-spatial functionalities as being able to manage complex
geometries (e.g., a cycle path, a parking area); (ii) full text
indexing allowing integrating keyword search with more
advanced semantic queries; (iii) handle quadruples (not only
triples) to allow associating dataset metadata with the triples
loaded, since data come from many different sources and it is
important to track the data provenience, metadata and the
associated license; (iv) some kind of inference like the basic
RDFS or the more advanced OWL2 profiles allowing inferring
new facts from the data available; (v) temporal indexing, since
many information and features are changing over time in smart
cities (e.g., weather situation and forecast, traffic flow, bus
position, events happening in the city), for this reason, it is
quite important that the RDF store should support temporal
search to allow the easy retrieval of temporal data; (vi) high
volume of queries, handling big RDF datasets with many users
querying the data are quite challenging, for this reason a
clustering solution is needed.

Another important point is that the solution should be open
source to avoid the risk of technology lock-in especially for
very new technologies as the RDF stores. Moreover there
should be an active community handling and supporting the
product.

III. EVALUATION METHODOLOGY

The evaluation methodology is performed in two phases. In
the first phase, an analysis of general features has been
performed by following the requirements provided in Section
II. In the second phase, performance tests have been designed
by using three datasets with growing size expanding temporal
horizon (1 month, 2 months and 3 months of real time data

cumulated). On these datasets, specific queries have been
designed by considering, all the aspects, and including spatial
and full text searches. The tests for assessing performance have
been performed on stores supporting the set of features
considered basilar, as reported in the following.

Therefore, the features taken into account to analyse the
RDF stores have been: (i) The SPARQL version supported
being 1.0 or 1.1; (ii) the inference type supported as full
materialization of triples at load time or materialization at
query time, and the inference profiles supported (e.g., RDFS,
RDFS+, OWL, OWL2, …); (iii) if the store is a triple or
quadruple store, that store only the subject predicate object or
it can have also a context URI; (iv) how the triples/quadruples
are physically stored like using a custom indexing or an
RDBMS or other external service (e.g., HBase, Cassandra); (v)
if the store supports Horizontal Clustering where replicated
nodes are used for a high availability and fault tolerant
solution; (vi) if the store supports Vertical Clustering where
data are replicated on multiple nodes while no node contains
all the data (index sharing); (vii) If the store supports Spatial
search as Basic (meaning that it is able to index and retrieve
only geolocated points) or Advanced (meaning that it is able to
index complex shapes, for example polylines); (viii) if the store
supports full text search, providing the ability to search using
keywords; (ix) if the store allows associating triple/quadruples
with a temporal validity context allowing to easily filter triples
using temporal constraints; (x) the size of stores managed as
the largest number of triples/quadruples reported to be
managed by the RDF store in the literature; (xi) the License
under which the RDF store is available, being it open source or
commercial; (xii) the development language (e.g., Java, C);
(xiii) if the project is still active.

Detailed performance testing should be performed on stores
that support the following minimum set of requirements: (i)
supporting SPARQL 1.1 as it provides aggregation functions
(group by, count) and other features that were missing in 1.0;
(ii) support for at least RDFS inference at load time or query
time; (iii) support for quadruple stores so that provenience
metadata can be associated with datasets; (iv) support for at
least basic spatial search to allow searching services via
geographical position; (v) support for full text search to be able
to integrate keyword search with semantic search; (vi)
supporting “Big stores”. If the store supports additional
features they are positively considered.

IV. SMART CITY RDF BENCHMARK

In this section, the main elements of the Smart City RDF
Benchmark are presented. First the datasets used are described,
and then the queries to be used for the assessment of
performances are motivated.

A. Dataset of the Smart City RDF Benchmark

The data used for the evaluation is based on the Km4City
knowledge base [2]. The Km4City models many aspects of a
smart city. Some of them are static (or quasi-static) data such
as (i) the road graph modeling the roads, the public
administrations, etc. (ii) the “services” that are present in the
city (e.g., restaurants, hotels, cycle paths, …) that are
associated with the road graph and organized in an hierarchy,
(iii) the bus stops, bus lines of the local transportation, (iv) the

http://www.disit.org/smartcityrdfbenchmark

road sensors that are present on the roads. Moreover, dynamic
information that change over time is also modelled, such as: (i)
the weather forecasts for the different municipalities, (ii) the
status/position of the bus with eventual forecasts for the arrival
at the bus stops, (iii) the status of the parking lots (e.g., number
of free places), (iv) the readings of the traffic sensors, (v) the
events defined on the city. The testing datasets, comprised of
triples, have been generated on the basis of Km4City model by
using data from the Florence smart city service.

Three different datasets has been generated. They share the
same ‘static’ information and differ for the dynamic part,
having one, two or three months of history, respectively, in the
past of the dynamic information. In Table I, the numbers of
quadruples that are present for the different parts of the
Km4City ontology are reported.

TABLE I. DATASET DISTRIBUTION

Type

1 month 2 months 3 months

quadru

ples
%

quadru

ples
%

quadru

ples
%

AVM 8.4M 19% 18M 33% 28M 43.1%

Parking 413k 0.9% 976k 1.8% 1.4M 2.1%

Sensors 900k 2% 1.7M 3.1% 2.2M 3.3%

Meteo 15k 0% 23k 0% 23k 0%

Total

dynamic
9.7M 22% 21M 38% 32.5M 48.5%

Road graph 33.5M 75% 33.5M 60.3% 33.5M 50%

Services 681k 1.5% 681k 1.2% 681k 1%

Other static 286k 0.6% 286k 0.5% 286k 0.4%

Total

static
34.5M 78% 34.5M 62% 34.5M 51.4%

Total 44.2M 100% 55.6M 100% 67.5M 100%

B. SPARQL Queries of the Smart City RDF Benchmark

The queries performed over the dataset are mainly those
used in http://servicemap.disit.org, and thus a live solution can
be accessed. It should be noted that the SPARQL
recommendation [10] does not cover the geo-spatial queries
and neither the full-text queries. Therefore, in order to support
those features, RDF store builder/vendor implemented the
feature with a specific syntax. For this reason for some queries
there is not a unique formulation and the query has to be
adapted for each RDF store under test (they can be accessed at
http://www.disit.org/smartcityrdfbenchmark). In the
benchmark there are 25 queries and 8 of them use inferred
information.

V. COMPARISON OF RDF STORES

In this section, the RDF stores under assessment are
compared on the basis of the feature model identified and
discussed in Section III. The comparison is performed with the
aim of identifying those that are better ranked to be used on
smart city applications. The RDF store solutions that support
all the minimum requirements are Virtuoso 7.2.0.1 open source
and commercial edition and GraphDB Standard Edition 6.1. As
a consequence, only the Virtuoso open source edition and
GraphDB SE have been assessed in term of performance, as
reported in Section VI. The RDF stores considered in the
assessment are briefly described in the following.

Virtuoso 7.2.0.1 [9], is a SPARQL 1.1 quadruple store
developed in C available both with open source and
commercial license. The open source version mainly misses the
horizontal clustering feature. Inference is not materialized at
load time, while query rewrite is performed to support RDFS+
inference. It is backed by the Virtuoso RDBMS and SPARQL
queries are translated to SQL. It supports advanced spatial
indexing and supports full text search. The community behind
virtuoso is leaded by OpenLink Software ltd and it is quite
active.

GraphDB SE 6.1 (former OWLIM store)
(http://ontotext.com/products/ontotext-graphdb/) is a
commercial solution providing a SPARQL 1.1 endpoint
supporting triple/quadruple stores with spatial indexing of
geographic coordinates and full text indexing based on Lucene.
It supports inference at load time with different rule sets
(RDFS, OWL2RL, etc.), and rule sets can be selected by the
user. It supports up to 10 billion of triples on a single node. The
Enterprise edition allows horizontal scaling. The solution is
implemented in Java using OpenRDF Sesame. The project is
still active and it is managed by Ontotext.

Blazegraph (ex BigData) (https://wiki.blazegraph.com) is
an open source project with also a commercial license. It
supports triple and quadruple stores. RDFS+ inference (at load
time) is available only on triple stores. It has a full-text
indexing support, and not geospatial indexing. It provides both
a horizontal and vertical scaling solution allowing an index to
be shared on multiple nodes. A single computer can manage up
to 50 billion triples. The project is managed by Systap and it is
still active.

CumulusRDF [10] is an open source project based on
OpenRDF Sesame using Apache Cassandra 1.2 as NoSQL
storage layer. It does not support inference and can store only
triples. Since it is based on Cassandra, it supports vertical
scaling for storage of the indexes on the nodes in the cluster,
while only one node is used to perform queries.

Stardog v3 (http://stardog.com/) is a commercial RDF
quadruple store developed by Clark&Parsia. It supports
SPARQL 1.1 and OWL2 inference at query time, full-text
indexing and search, while the spatial indexing is not
supported. It allows horizontal scaling, and it is a quite active
project. Stardog supports 10 billion triples on single node.

Strabon [11] is an open source SPARQL 1.1 store
developed to support both spatial and temporal search. It is
based on PostGIS extension of Postgres RDBMS; it does not
support inference, and neither full-text search. It only provides
support for storing triples (the context URI associated with the
triple is used for temporal linking). No clustering solution is
available.

VI. PERFORMANCE ASSESSMENT

The performance evaluation has been carried out by
considering the data load time and the query execution time,
for space limitations the full results are available on
http://www.disit.org/smartcityrdfbenchmark and in the
following is reported a synthesis. For loading 67M quadruples
of the 3 months dataset Graph DB took about 8h and 12m
while virtuoso 3h and 22m. GraphDB is about three times
slower than Virtuoso due to the fact that GraphDB performs

http://servicemap.disit.org/
http://www.disit.org/smartcityrdfbenchmark
http://ontotext.com/products/ontotext-graphdb/
https://wiki.blazegraph.com/
http://stardog.com/
http://www.disit.org/smartcityrdfbenchmark

inference at load time while Virtuoso at query time. And also
the number of triples indexed in GraphDB (106M) is 36%
bigger than those of Virtuoso (69M). For Virtuoso, the
increment of triples stored with respect to those stated (2.1M
for the 3 months case) is only due to transform the geo:lat and
geo:long triples in a geo:geometry with POINT() to enable the
geo-spatial indexing. While in the same case, for GraphDB the
increment of 39M triples is due to the materialization of
inference. The queries were performed with the three datasets
and were tested performing a pseudo-random sequence of 500
queries repeated two times with some pseudo-random
arguments in order to reduce the caching effect. The sequence
of queries performed is the same for each execution in order to
test the same sequence on different systems. From the query
results, when no spatial and full text search and inference are
involved, the performance is quite comparable, and in some
cases GraphDB is better ranked. When inference is needed in
the case of Virtuoso the inference should be enabled on the
single constraint involving a general class (e.g., all services in
the Accommodation class). While if the inference is enabled,
generally on the query, the internal automated query rewrite
takes a very long time (perhaps due to the size of the
ontologies used). For example, for query Service-Acc-Clt-Trs-
W&F-florence that search for services in Florence that are
Accommodations, Cultural activities, Transport or Wine and
Food, in Virtuoso the time grows from an average of 2.62s to
an average of 24.5s (on the 3 months dataset) while GraphDB
takes about 11.45s. When considering the spatial indexing we
found in Virtuoso various problems using the st_intersection
function. In some cases, Virtuoso returns an error, in other
cases providing a lower number of results with respect to the
correctly expected and providing different results for the same
query on the three different datasets that do not differ for the
part considered in the query. On the other hand, in Virtuoso, if
the st_distance function is used, all the obtained results have
been verified to be correct, apart from few cases on the border
(due to the numerical computation in measuring distances).
The usage of the distance function for Virtuoso is good
solution in most cases for example query retrieving all services
within 5km from a gps position on the 3 months datasets takes
1.5s on virtuoso using st_distance function while it takes 9.7s
on GraphDB, but reducing the distance to 200m Virtuoso takes
248ms while GraphDB only 153ms. Using the st_distance
function on Virtuoso seems that the query optimizer to do not
exploit the spatial index. This fact may be deduced from
comparing that a same query (Find-address) by using
st_distance function takes about 6s while using the st_intersect
function takes about 0.3s. Another aspect to be considered is
the mixing of spatial query with text search query. With
GraphDB, we registered very long execution time hitting in
some cases the timeout of one hour. In this case of mixing
spatial and text search for Virtuoso, the queries using
st_intersect function returned an error while using the
st_distance function takes only 157 ms. Regarding the analytic
queries that count the daily number of records of the weather
forecasts, bus, sensor data, parking status for the three datasets
Virtuoso is better ranked, it has an execution time less than
404ms while GraphDB is less than 3s. Moreover Virtuoso
presents a lower growing factor with respect to GraphDB.

VII. CONCLUSION

In this paper we have reported a comparative study about
state of the art RDF stores on the basis of their main features
and in particular on the SPARQL aspects. In addition, the
Smart City RDF Benchmark has been proposed. The
benchmark is based on (i) some datasets of quadruples
(grounded on Km4City model); (ii) a set of SPARQL queries.
In the benchmark, particular emphasis is devoted to geo and
full text searches that have been partially considered in state of
the art. The comparison addressed a number of well-known
RDF stores, and in particular Virtuoso and GraphDB for the
performance aspects. As a general consideration, regarding the
performance, it should be noted that Virtuoso performs better
when decreasing the selectivity of the query, thus providing a
high number of results. On the contrary GraphDB performs
better when specific results are searched, thus when a smaller
number of results are requested. For Virtuoso we have found
some problems with the st_intersect function that is buggy and
the queries need to be rewritten using the st_distance function.
It seems that in this case the optimizer does not use the spatial
indexing structure as the starting point for a selection.

ACKNOWLEDGMENT

The authors would like to thanks ONTOTEXT to have
provided access to a trial version of their RDF store. This work
has been developed in the context of Km4City activity for Sii-
Mobility Smart City National project.

REFERENCES

[1] Mulligan, C.E.A.; Olsson, M., "Architectural implications of smart city
business models: an evolutionary perspective," Communications
Magazine, IEEE , vol.51, no.6, pp.80,85, June 2013

[2] P. Bellini, M. Benigni, R. Billero, P. Nesi, N. Rauch, “Km4City
Ontology Bulding vs Data Harvesting and Cleaning for Smart-city
Services”, International Journal of Visual Language and Computing,
Elsevier, 2014

[3] Y. Guo, Z. Pan, and J. Heflin. “Lubm: A benchmark for owl knowledge
base systems”. J. Web Semantics, 3(2-3):158–182, 2005.

[4] Chourabi, H.; Taewoo Nam; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.;
Nahon, Karine; Pardo, T.A.; Scholl, Hans Jochen, "Understanding Smart
Cities: An Integrative Framework," System Science (HICSS), 2012 45th
Hawaii International Conference on , vol., no., pp.2289,2297, 4-7 Jan.
2012

[5] C. Bizer, A. Schultz. “The Berlin SPARQL Benchmark”. Int. Journal on
Semantic Web & Information Systems, Vol. 5, Issue 2, Pages 1-24, 2009

[6] Open Geospatial Consortium, “GeoGeoSPARQL - A Geographic Query
Language for RDF Data”, Sept. 10 2012
http://www.opengeospatial.org/standards/geosparql

[7] G. Garbis, K. Kyzirakos, M. Koubarakis. “Geographica: A Benchmark
for Geospatial RDF Stores”. In the 12th International Semantic Web
Conference (ISWC 2013). Sydney, Australia, October 21-25, 2013

[8] W3C Consortium, “SPARQL 1.1 Query Language”, W3C
Recommendation, 21 March 2013, http://www.w3.org/TR/sparql11-
query/

[9] O. Erling and I. Mikhailov. “Virtuoso: RDF Support in a Native
RDBMS”. In Semantic Web Information Management, pages 501-519.
Springer, 2009.

[10] G. Ladwig, A. Harth, "CumulusRDF: Linked data management on
nested key-value stores", 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), 2011

[11] K. Kyzirakos, M. Karpathiotakis and M. Koubarakis. “Strabon: A
Semantic Geospatial DBMS”. In the 11th International Semantic Web
Conference (ISWC 2012), Boston, USA, 11-15 November 2012.

http://www.opengeospatial.org/standards/geosparql
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

